Evaluate
\frac{9-\sqrt{10}-3\sqrt{5}-5\sqrt{2}}{2}\approx -3.970774702
Factor
\frac{9 - \sqrt{10} - 3 \sqrt{5} - 5 \sqrt{2}}{2} = -3.9707747022666124
Share
Copied to clipboard
\frac{12-2\sqrt{5}-4\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}}
Add 8 and 4 to get 12.
\frac{12-6\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}}
Combine -2\sqrt{5} and -4\sqrt{5} to get -6\sqrt{5}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}
Rationalize the denominator of \frac{12-6\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}} by multiplying numerator and denominator by 1+\sqrt{5}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{1-5}
Square 1. Square \sqrt{5}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{-4}
Subtract 5 from 1 to get -4.
\frac{12+12\sqrt{5}-6\sqrt{5}-6\left(\sqrt{5}\right)^{2}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Apply the distributive property by multiplying each term of 12-6\sqrt{5}+2\sqrt{10} by each term of 1+\sqrt{5}.
\frac{12+6\sqrt{5}-6\left(\sqrt{5}\right)^{2}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Combine 12\sqrt{5} and -6\sqrt{5} to get 6\sqrt{5}.
\frac{12+6\sqrt{5}-6\times 5+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
The square of \sqrt{5} is 5.
\frac{12+6\sqrt{5}-30+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Multiply -6 and 5 to get -30.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Subtract 30 from 12 to get -18.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\sqrt{5}\sqrt{2}\sqrt{5}}{-4}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\times 5\sqrt{2}}{-4}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{-18+6\sqrt{5}+2\sqrt{10}+10\sqrt{2}}{-4}
Multiply 2 and 5 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}