Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{12-2\sqrt{5}-4\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}}
Add 8 and 4 to get 12.
\frac{12-6\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}}
Combine -2\sqrt{5} and -4\sqrt{5} to get -6\sqrt{5}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}
Rationalize the denominator of \frac{12-6\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}} by multiplying numerator and denominator by 1+\sqrt{5}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{1-5}
Square 1. Square \sqrt{5}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{-4}
Subtract 5 from 1 to get -4.
\frac{12+12\sqrt{5}-6\sqrt{5}-6\left(\sqrt{5}\right)^{2}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Apply the distributive property by multiplying each term of 12-6\sqrt{5}+2\sqrt{10} by each term of 1+\sqrt{5}.
\frac{12+6\sqrt{5}-6\left(\sqrt{5}\right)^{2}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Combine 12\sqrt{5} and -6\sqrt{5} to get 6\sqrt{5}.
\frac{12+6\sqrt{5}-6\times 5+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
The square of \sqrt{5} is 5.
\frac{12+6\sqrt{5}-30+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Multiply -6 and 5 to get -30.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
Subtract 30 from 12 to get -18.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\sqrt{5}\sqrt{2}\sqrt{5}}{-4}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\times 5\sqrt{2}}{-4}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{-18+6\sqrt{5}+2\sqrt{10}+10\sqrt{2}}{-4}
Multiply 2 and 5 to get 10.