Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8+3i\right)\left(-9-4i\right)}{\left(-9+4i\right)\left(-9-4i\right)}\left(-9-7\right)
Multiply both numerator and denominator of \frac{8+3i}{-9+4i} by the complex conjugate of the denominator, -9-4i.
\frac{\left(8+3i\right)\left(-9-4i\right)}{\left(-9\right)^{2}-4^{2}i^{2}}\left(-9-7\right)
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8+3i\right)\left(-9-4i\right)}{97}\left(-9-7\right)
By definition, i^{2} is -1. Calculate the denominator.
\frac{8\left(-9\right)+8\times \left(-4i\right)+3i\left(-9\right)+3\left(-4\right)i^{2}}{97}\left(-9-7\right)
Multiply complex numbers 8+3i and -9-4i like you multiply binomials.
\frac{8\left(-9\right)+8\times \left(-4i\right)+3i\left(-9\right)+3\left(-4\right)\left(-1\right)}{97}\left(-9-7\right)
By definition, i^{2} is -1.
\frac{-72-32i-27i+12}{97}\left(-9-7\right)
Do the multiplications in 8\left(-9\right)+8\times \left(-4i\right)+3i\left(-9\right)+3\left(-4\right)\left(-1\right).
\frac{-72+12+\left(-32-27\right)i}{97}\left(-9-7\right)
Combine the real and imaginary parts in -72-32i-27i+12.
\frac{-60-59i}{97}\left(-9-7\right)
Do the additions in -72+12+\left(-32-27\right)i.
\left(-\frac{60}{97}-\frac{59}{97}i\right)\left(-9-7\right)
Divide -60-59i by 97 to get -\frac{60}{97}-\frac{59}{97}i.
\left(-\frac{60}{97}-\frac{59}{97}i\right)\left(-16\right)
Subtract 7 from -9 to get -16.
-\frac{60}{97}\left(-16\right)-\frac{59}{97}i\left(-16\right)
Multiply -\frac{60}{97}-\frac{59}{97}i times -16.
\frac{960}{97}+\frac{944}{97}i
Do the multiplications.
Re(\frac{\left(8+3i\right)\left(-9-4i\right)}{\left(-9+4i\right)\left(-9-4i\right)}\left(-9-7\right))
Multiply both numerator and denominator of \frac{8+3i}{-9+4i} by the complex conjugate of the denominator, -9-4i.
Re(\frac{\left(8+3i\right)\left(-9-4i\right)}{\left(-9\right)^{2}-4^{2}i^{2}}\left(-9-7\right))
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8+3i\right)\left(-9-4i\right)}{97}\left(-9-7\right))
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{8\left(-9\right)+8\times \left(-4i\right)+3i\left(-9\right)+3\left(-4\right)i^{2}}{97}\left(-9-7\right))
Multiply complex numbers 8+3i and -9-4i like you multiply binomials.
Re(\frac{8\left(-9\right)+8\times \left(-4i\right)+3i\left(-9\right)+3\left(-4\right)\left(-1\right)}{97}\left(-9-7\right))
By definition, i^{2} is -1.
Re(\frac{-72-32i-27i+12}{97}\left(-9-7\right))
Do the multiplications in 8\left(-9\right)+8\times \left(-4i\right)+3i\left(-9\right)+3\left(-4\right)\left(-1\right).
Re(\frac{-72+12+\left(-32-27\right)i}{97}\left(-9-7\right))
Combine the real and imaginary parts in -72-32i-27i+12.
Re(\frac{-60-59i}{97}\left(-9-7\right))
Do the additions in -72+12+\left(-32-27\right)i.
Re(\left(-\frac{60}{97}-\frac{59}{97}i\right)\left(-9-7\right))
Divide -60-59i by 97 to get -\frac{60}{97}-\frac{59}{97}i.
Re(\left(-\frac{60}{97}-\frac{59}{97}i\right)\left(-16\right))
Subtract 7 from -9 to get -16.
Re(-\frac{60}{97}\left(-16\right)-\frac{59}{97}i\left(-16\right))
Multiply -\frac{60}{97}-\frac{59}{97}i times -16.
Re(\frac{960}{97}+\frac{944}{97}i)
Do the multiplications in -\frac{60}{97}\left(-16\right)-\frac{59}{97}i\left(-16\right).
\frac{960}{97}
The real part of \frac{960}{97}+\frac{944}{97}i is \frac{960}{97}.