Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8+3\sqrt{7}\right)\left(8+3\sqrt{7}\right)}{\left(8-3\sqrt{7}\right)\left(8+3\sqrt{7}\right)}
Rationalize the denominator of \frac{8+3\sqrt{7}}{8-3\sqrt{7}} by multiplying numerator and denominator by 8+3\sqrt{7}.
\frac{\left(8+3\sqrt{7}\right)\left(8+3\sqrt{7}\right)}{8^{2}-\left(-3\sqrt{7}\right)^{2}}
Consider \left(8-3\sqrt{7}\right)\left(8+3\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8+3\sqrt{7}\right)^{2}}{8^{2}-\left(-3\sqrt{7}\right)^{2}}
Multiply 8+3\sqrt{7} and 8+3\sqrt{7} to get \left(8+3\sqrt{7}\right)^{2}.
\frac{64+48\sqrt{7}+9\left(\sqrt{7}\right)^{2}}{8^{2}-\left(-3\sqrt{7}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8+3\sqrt{7}\right)^{2}.
\frac{64+48\sqrt{7}+9\times 7}{8^{2}-\left(-3\sqrt{7}\right)^{2}}
The square of \sqrt{7} is 7.
\frac{64+48\sqrt{7}+63}{8^{2}-\left(-3\sqrt{7}\right)^{2}}
Multiply 9 and 7 to get 63.
\frac{127+48\sqrt{7}}{8^{2}-\left(-3\sqrt{7}\right)^{2}}
Add 64 and 63 to get 127.
\frac{127+48\sqrt{7}}{64-\left(-3\sqrt{7}\right)^{2}}
Calculate 8 to the power of 2 and get 64.
\frac{127+48\sqrt{7}}{64-\left(-3\right)^{2}\left(\sqrt{7}\right)^{2}}
Expand \left(-3\sqrt{7}\right)^{2}.
\frac{127+48\sqrt{7}}{64-9\left(\sqrt{7}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{127+48\sqrt{7}}{64-9\times 7}
The square of \sqrt{7} is 7.
\frac{127+48\sqrt{7}}{64-63}
Multiply 9 and 7 to get 63.
\frac{127+48\sqrt{7}}{1}
Subtract 63 from 64 to get 1.
127+48\sqrt{7}
Anything divided by one gives itself.