Evaluate
\frac{79}{40}=1.975
Factor
\frac{79}{2 ^ {3} \cdot 5} = 1\frac{39}{40} = 1.975
Share
Copied to clipboard
\begin{array}{l}\phantom{4000)}\phantom{1}\\4000\overline{)7900}\\\end{array}
Use the 1^{st} digit 7 from dividend 7900
\begin{array}{l}\phantom{4000)}0\phantom{2}\\4000\overline{)7900}\\\end{array}
Since 7 is less than 4000, use the next digit 9 from dividend 7900 and add 0 to the quotient
\begin{array}{l}\phantom{4000)}0\phantom{3}\\4000\overline{)7900}\\\end{array}
Use the 2^{nd} digit 9 from dividend 7900
\begin{array}{l}\phantom{4000)}00\phantom{4}\\4000\overline{)7900}\\\end{array}
Since 79 is less than 4000, use the next digit 0 from dividend 7900 and add 0 to the quotient
\begin{array}{l}\phantom{4000)}00\phantom{5}\\4000\overline{)7900}\\\end{array}
Use the 3^{rd} digit 0 from dividend 7900
\begin{array}{l}\phantom{4000)}000\phantom{6}\\4000\overline{)7900}\\\end{array}
Since 790 is less than 4000, use the next digit 0 from dividend 7900 and add 0 to the quotient
\begin{array}{l}\phantom{4000)}000\phantom{7}\\4000\overline{)7900}\\\end{array}
Use the 4^{th} digit 0 from dividend 7900
\begin{array}{l}\phantom{4000)}0001\phantom{8}\\4000\overline{)7900}\\\phantom{4000)}\underline{\phantom{}4000\phantom{}}\\\phantom{4000)}3900\\\end{array}
Find closest multiple of 4000 to 7900. We see that 1 \times 4000 = 4000 is the nearest. Now subtract 4000 from 7900 to get reminder 3900. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }3900
Since 3900 is less than 4000, stop the division. The reminder is 3900. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}