Evaluate
\frac{781218181}{72}\approx 10850252.513888889
Factor
\frac{781218181}{2 ^ {3} \cdot 3 ^ {2}} = 10850252\frac{37}{72} = 10850252.513888888
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)781218181}\\\end{array}
Use the 1^{st} digit 7 from dividend 781218181
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)781218181}\\\end{array}
Since 7 is less than 72, use the next digit 8 from dividend 781218181 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)781218181}\\\end{array}
Use the 2^{nd} digit 8 from dividend 781218181
\begin{array}{l}\phantom{72)}01\phantom{4}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}6\\\end{array}
Find closest multiple of 72 to 78. We see that 1 \times 72 = 72 is the nearest. Now subtract 72 from 78 to get reminder 6. Add 1 to quotient.
\begin{array}{l}\phantom{72)}01\phantom{5}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}61\\\end{array}
Use the 3^{rd} digit 1 from dividend 781218181
\begin{array}{l}\phantom{72)}010\phantom{6}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}61\\\end{array}
Since 61 is less than 72, use the next digit 2 from dividend 781218181 and add 0 to the quotient
\begin{array}{l}\phantom{72)}010\phantom{7}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}612\\\end{array}
Use the 4^{th} digit 2 from dividend 781218181
\begin{array}{l}\phantom{72)}0108\phantom{8}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}612\\\phantom{72)}\underline{\phantom{9}576\phantom{99999}}\\\phantom{72)99}36\\\end{array}
Find closest multiple of 72 to 612. We see that 8 \times 72 = 576 is the nearest. Now subtract 576 from 612 to get reminder 36. Add 8 to quotient.
\begin{array}{l}\phantom{72)}0108\phantom{9}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}612\\\phantom{72)}\underline{\phantom{9}576\phantom{99999}}\\\phantom{72)99}361\\\end{array}
Use the 5^{th} digit 1 from dividend 781218181
\begin{array}{l}\phantom{72)}01085\phantom{10}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}612\\\phantom{72)}\underline{\phantom{9}576\phantom{99999}}\\\phantom{72)99}361\\\phantom{72)}\underline{\phantom{99}360\phantom{9999}}\\\phantom{72)9999}1\\\end{array}
Find closest multiple of 72 to 361. We see that 5 \times 72 = 360 is the nearest. Now subtract 360 from 361 to get reminder 1. Add 5 to quotient.
\begin{array}{l}\phantom{72)}01085\phantom{11}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}612\\\phantom{72)}\underline{\phantom{9}576\phantom{99999}}\\\phantom{72)99}361\\\phantom{72)}\underline{\phantom{99}360\phantom{9999}}\\\phantom{72)9999}18\\\end{array}
Use the 6^{th} digit 8 from dividend 781218181
\begin{array}{l}\phantom{72)}010850\phantom{12}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}612\\\phantom{72)}\underline{\phantom{9}576\phantom{99999}}\\\phantom{72)99}361\\\phantom{72)}\underline{\phantom{99}360\phantom{9999}}\\\phantom{72)9999}18\\\end{array}
Since 18 is less than 72, use the next digit 1 from dividend 781218181 and add 0 to the quotient
\begin{array}{l}\phantom{72)}010850\phantom{13}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}612\\\phantom{72)}\underline{\phantom{9}576\phantom{99999}}\\\phantom{72)99}361\\\phantom{72)}\underline{\phantom{99}360\phantom{9999}}\\\phantom{72)9999}181\\\end{array}
Use the 7^{th} digit 1 from dividend 781218181
\begin{array}{l}\phantom{72)}0108502\phantom{14}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}612\\\phantom{72)}\underline{\phantom{9}576\phantom{99999}}\\\phantom{72)99}361\\\phantom{72)}\underline{\phantom{99}360\phantom{9999}}\\\phantom{72)9999}181\\\phantom{72)}\underline{\phantom{9999}144\phantom{99}}\\\phantom{72)99999}37\\\end{array}
Find closest multiple of 72 to 181. We see that 2 \times 72 = 144 is the nearest. Now subtract 144 from 181 to get reminder 37. Add 2 to quotient.
\begin{array}{l}\phantom{72)}0108502\phantom{15}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}612\\\phantom{72)}\underline{\phantom{9}576\phantom{99999}}\\\phantom{72)99}361\\\phantom{72)}\underline{\phantom{99}360\phantom{9999}}\\\phantom{72)9999}181\\\phantom{72)}\underline{\phantom{9999}144\phantom{99}}\\\phantom{72)99999}378\\\end{array}
Use the 8^{th} digit 8 from dividend 781218181
\begin{array}{l}\phantom{72)}01085025\phantom{16}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}612\\\phantom{72)}\underline{\phantom{9}576\phantom{99999}}\\\phantom{72)99}361\\\phantom{72)}\underline{\phantom{99}360\phantom{9999}}\\\phantom{72)9999}181\\\phantom{72)}\underline{\phantom{9999}144\phantom{99}}\\\phantom{72)99999}378\\\phantom{72)}\underline{\phantom{99999}360\phantom{9}}\\\phantom{72)999999}18\\\end{array}
Find closest multiple of 72 to 378. We see that 5 \times 72 = 360 is the nearest. Now subtract 360 from 378 to get reminder 18. Add 5 to quotient.
\begin{array}{l}\phantom{72)}01085025\phantom{17}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}612\\\phantom{72)}\underline{\phantom{9}576\phantom{99999}}\\\phantom{72)99}361\\\phantom{72)}\underline{\phantom{99}360\phantom{9999}}\\\phantom{72)9999}181\\\phantom{72)}\underline{\phantom{9999}144\phantom{99}}\\\phantom{72)99999}378\\\phantom{72)}\underline{\phantom{99999}360\phantom{9}}\\\phantom{72)999999}181\\\end{array}
Use the 9^{th} digit 1 from dividend 781218181
\begin{array}{l}\phantom{72)}010850252\phantom{18}\\72\overline{)781218181}\\\phantom{72)}\underline{\phantom{}72\phantom{9999999}}\\\phantom{72)9}612\\\phantom{72)}\underline{\phantom{9}576\phantom{99999}}\\\phantom{72)99}361\\\phantom{72)}\underline{\phantom{99}360\phantom{9999}}\\\phantom{72)9999}181\\\phantom{72)}\underline{\phantom{9999}144\phantom{99}}\\\phantom{72)99999}378\\\phantom{72)}\underline{\phantom{99999}360\phantom{9}}\\\phantom{72)999999}181\\\phantom{72)}\underline{\phantom{999999}144\phantom{}}\\\phantom{72)9999999}37\\\end{array}
Find closest multiple of 72 to 181. We see that 2 \times 72 = 144 is the nearest. Now subtract 144 from 181 to get reminder 37. Add 2 to quotient.
\text{Quotient: }10850252 \text{Reminder: }37
Since 37 is less than 72, stop the division. The reminder is 37. The topmost line 010850252 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 10850252.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}