Evaluate
\frac{7}{4}=1.75
Factor
\frac{7}{2 ^ {2}} = 1\frac{3}{4} = 1.75
Share
Copied to clipboard
\begin{array}{l}\phantom{444)}\phantom{1}\\444\overline{)777}\\\end{array}
Use the 1^{st} digit 7 from dividend 777
\begin{array}{l}\phantom{444)}0\phantom{2}\\444\overline{)777}\\\end{array}
Since 7 is less than 444, use the next digit 7 from dividend 777 and add 0 to the quotient
\begin{array}{l}\phantom{444)}0\phantom{3}\\444\overline{)777}\\\end{array}
Use the 2^{nd} digit 7 from dividend 777
\begin{array}{l}\phantom{444)}00\phantom{4}\\444\overline{)777}\\\end{array}
Since 77 is less than 444, use the next digit 7 from dividend 777 and add 0 to the quotient
\begin{array}{l}\phantom{444)}00\phantom{5}\\444\overline{)777}\\\end{array}
Use the 3^{rd} digit 7 from dividend 777
\begin{array}{l}\phantom{444)}001\phantom{6}\\444\overline{)777}\\\phantom{444)}\underline{\phantom{}444\phantom{}}\\\phantom{444)}333\\\end{array}
Find closest multiple of 444 to 777. We see that 1 \times 444 = 444 is the nearest. Now subtract 444 from 777 to get reminder 333. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }333
Since 333 is less than 444, stop the division. The reminder is 333. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}