Solve for x
x=\frac{39}{49}\approx 0.795918367
Graph
Share
Copied to clipboard
\left(\frac{1}{22}x+\frac{1}{22}\right)\left(77-50\right)=3-x
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by x+1.
\left(\frac{1}{22}x+\frac{1}{22}\right)\times 27=3-x
Subtract 50 from 77 to get 27.
\frac{27}{22}x+\frac{27}{22}=3-x
Use the distributive property to multiply \frac{1}{22}x+\frac{1}{22} by 27.
\frac{27}{22}x+\frac{27}{22}+x=3
Add x to both sides.
\frac{49}{22}x+\frac{27}{22}=3
Combine \frac{27}{22}x and x to get \frac{49}{22}x.
\frac{49}{22}x=3-\frac{27}{22}
Subtract \frac{27}{22} from both sides.
\frac{49}{22}x=\frac{39}{22}
Subtract \frac{27}{22} from 3 to get \frac{39}{22}.
x=\frac{39}{22}\times \frac{22}{49}
Multiply both sides by \frac{22}{49}, the reciprocal of \frac{49}{22}.
x=\frac{39}{49}
Multiply \frac{39}{22} and \frac{22}{49} to get \frac{39}{49}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}