Solve for T
T=-\frac{ht-77t-60h+4347}{76-h}
t\neq -213\text{ and }h\neq 77\text{ and }h\neq 76
Solve for h
h=-\frac{4347+76T-77t}{t-T-60}
t\neq T+60\text{ and }t\neq -213\text{ and }T\neq -273
Quiz
Linear Equation
5 problems similar to:
\frac { 76 - h } { t + 213 } = \frac { 77 - h } { T + 273 }
Share
Copied to clipboard
\left(T+273\right)\left(76-h\right)=\left(t+213\right)\left(77-h\right)
Variable T cannot be equal to -273 since division by zero is not defined. Multiply both sides of the equation by \left(T+273\right)\left(t+213\right), the least common multiple of t+213,T+273.
76T-Th+20748-273h=\left(t+213\right)\left(77-h\right)
Use the distributive property to multiply T+273 by 76-h.
76T-Th+20748-273h=77t-th+16401-213h
Use the distributive property to multiply t+213 by 77-h.
76T-Th-273h=77t-th+16401-213h-20748
Subtract 20748 from both sides.
76T-Th-273h=77t-th-4347-213h
Subtract 20748 from 16401 to get -4347.
76T-Th=77t-th-4347-213h+273h
Add 273h to both sides.
76T-Th=77t-th-4347+60h
Combine -213h and 273h to get 60h.
\left(76-h\right)T=77t-th-4347+60h
Combine all terms containing T.
\left(76-h\right)T=-ht+77t+60h-4347
The equation is in standard form.
\frac{\left(76-h\right)T}{76-h}=\frac{-ht+77t+60h-4347}{76-h}
Divide both sides by 76-h.
T=\frac{-ht+77t+60h-4347}{76-h}
Dividing by 76-h undoes the multiplication by 76-h.
T=\frac{-ht+77t+60h-4347}{76-h}\text{, }T\neq -273
Variable T cannot be equal to -273.
\left(T+273\right)\left(76-h\right)=\left(t+213\right)\left(77-h\right)
Multiply both sides of the equation by \left(T+273\right)\left(t+213\right), the least common multiple of t+213,T+273.
76T-Th+20748-273h=\left(t+213\right)\left(77-h\right)
Use the distributive property to multiply T+273 by 76-h.
76T-Th+20748-273h=77t-th+16401-213h
Use the distributive property to multiply t+213 by 77-h.
76T-Th+20748-273h+th=77t+16401-213h
Add th to both sides.
76T-Th+20748-273h+th+213h=77t+16401
Add 213h to both sides.
76T-Th+20748-60h+th=77t+16401
Combine -273h and 213h to get -60h.
-Th+20748-60h+th=77t+16401-76T
Subtract 76T from both sides.
-Th-60h+th=77t+16401-76T-20748
Subtract 20748 from both sides.
-Th-60h+th=77t-4347-76T
Subtract 20748 from 16401 to get -4347.
\left(-T-60+t\right)h=77t-4347-76T
Combine all terms containing h.
\left(t-T-60\right)h=77t-76T-4347
The equation is in standard form.
\frac{\left(t-T-60\right)h}{t-T-60}=\frac{77t-76T-4347}{t-T-60}
Divide both sides by t-T-60.
h=\frac{77t-76T-4347}{t-T-60}
Dividing by t-T-60 undoes the multiplication by t-T-60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}