Solve for q
q=\frac{\left(14-3\sqrt{7}\right)\left(-2\sqrt{7}p-2\sqrt{77}r-3\sqrt{11}r-3\sqrt{77}s-14\sqrt{11}s-3p+19\sqrt{7}+76-19\sqrt{11}\right)}{133}
Solve for p
p=-\frac{\left(3-2\sqrt{7}\right)\left(-2\sqrt{77}r-3\sqrt{7}q-3\sqrt{11}r-3\sqrt{77}s-14\sqrt{11}s-14q+19\sqrt{7}+76-19\sqrt{11}\right)}{19}
Share
Copied to clipboard
p+q\sqrt{7}+r\sqrt{11}+s\sqrt{77}=\frac{76}{4+\sqrt{7}+\sqrt{11}}
Swap sides so that all variable terms are on the left hand side.
q\sqrt{7}+r\sqrt{11}+s\sqrt{77}=\frac{76}{4+\sqrt{7}+\sqrt{11}}-p
Subtract p from both sides.
q\sqrt{7}+r\sqrt{11}+s\sqrt{77}=\frac{76}{4+\sqrt{7}+\sqrt{11}}-\frac{p\left(4+\sqrt{7}+\sqrt{11}\right)}{4+\sqrt{7}+\sqrt{11}}
To add or subtract expressions, expand them to make their denominators the same. Multiply p times \frac{4+\sqrt{7}+\sqrt{11}}{4+\sqrt{7}+\sqrt{11}}.
q\sqrt{7}+r\sqrt{11}+s\sqrt{77}=\frac{76-p\left(4+\sqrt{7}+\sqrt{11}\right)}{4+\sqrt{7}+\sqrt{11}}
Since \frac{76}{4+\sqrt{7}+\sqrt{11}} and \frac{p\left(4+\sqrt{7}+\sqrt{11}\right)}{4+\sqrt{7}+\sqrt{11}} have the same denominator, subtract them by subtracting their numerators.
q\sqrt{7}+r\sqrt{11}+s\sqrt{77}=\frac{76-4p-p\sqrt{7}-p\sqrt{11}}{4+\sqrt{7}+\sqrt{11}}
Do the multiplications in 76-p\left(4+\sqrt{7}+\sqrt{11}\right).
q\sqrt{7}+s\sqrt{77}=\frac{76-4p-p\sqrt{7}-p\sqrt{11}}{4+\sqrt{7}+\sqrt{11}}-r\sqrt{11}
Subtract r\sqrt{11} from both sides.
q\sqrt{7}+s\sqrt{77}=\frac{76-4p-p\sqrt{7}-p\sqrt{11}}{4+\sqrt{7}+\sqrt{11}}-\frac{r\sqrt{11}\left(4+\sqrt{7}+\sqrt{11}\right)}{4+\sqrt{7}+\sqrt{11}}
To add or subtract expressions, expand them to make their denominators the same. Multiply r\sqrt{11} times \frac{4+\sqrt{7}+\sqrt{11}}{4+\sqrt{7}+\sqrt{11}}.
q\sqrt{7}+s\sqrt{77}=\frac{76-4p-p\sqrt{7}-p\sqrt{11}-r\sqrt{11}\left(4+\sqrt{7}+\sqrt{11}\right)}{4+\sqrt{7}+\sqrt{11}}
Since \frac{76-4p-p\sqrt{7}-p\sqrt{11}}{4+\sqrt{7}+\sqrt{11}} and \frac{r\sqrt{11}\left(4+\sqrt{7}+\sqrt{11}\right)}{4+\sqrt{7}+\sqrt{11}} have the same denominator, subtract them by subtracting their numerators.
q\sqrt{7}+s\sqrt{77}=\frac{76-4p-p\sqrt{7}-p\sqrt{11}-4r\sqrt{11}-r\sqrt{77}-11r}{4+\sqrt{7}+\sqrt{11}}
Do the multiplications in 76-4p-p\sqrt{7}-p\sqrt{11}-r\sqrt{11}\left(4+\sqrt{7}+\sqrt{11}\right).
q\sqrt{7}=\frac{76-4p-p\sqrt{7}-p\sqrt{11}-4r\sqrt{11}-r\sqrt{77}-11r}{4+\sqrt{7}+\sqrt{11}}-s\sqrt{77}
Subtract s\sqrt{77} from both sides.
q\sqrt{7}=\frac{76-4p-p\sqrt{7}-p\sqrt{11}-4r\sqrt{11}-r\sqrt{77}-11r}{4+\sqrt{7}+\sqrt{11}}-\frac{s\sqrt{77}\left(4+\sqrt{7}+\sqrt{11}\right)}{4+\sqrt{7}+\sqrt{11}}
To add or subtract expressions, expand them to make their denominators the same. Multiply s\sqrt{77} times \frac{4+\sqrt{7}+\sqrt{11}}{4+\sqrt{7}+\sqrt{11}}.
q\sqrt{7}=\frac{76-4p-p\sqrt{7}-p\sqrt{11}-4r\sqrt{11}-r\sqrt{77}-11r-s\sqrt{77}\left(4+\sqrt{7}+\sqrt{11}\right)}{4+\sqrt{7}+\sqrt{11}}
Since \frac{76-4p-p\sqrt{7}-p\sqrt{11}-4r\sqrt{11}-r\sqrt{77}-11r}{4+\sqrt{7}+\sqrt{11}} and \frac{s\sqrt{77}\left(4+\sqrt{7}+\sqrt{11}\right)}{4+\sqrt{7}+\sqrt{11}} have the same denominator, subtract them by subtracting their numerators.
q\sqrt{7}=\frac{76-4p-p\sqrt{7}-p\sqrt{11}-4r\sqrt{11}-r\sqrt{77}-11r-4s\sqrt{77}-7s\sqrt{11}-11s\sqrt{7}}{4+\sqrt{7}+\sqrt{11}}
Do the multiplications in 76-4p-p\sqrt{7}-p\sqrt{11}-4r\sqrt{11}-r\sqrt{77}-11r-s\sqrt{77}\left(4+\sqrt{7}+\sqrt{11}\right).
\sqrt{7}q=\frac{-4\sqrt{11}r-4\sqrt{77}s-7\sqrt{11}s-11\sqrt{7}s-\sqrt{7}p-\sqrt{11}p-\sqrt{77}r-4p-11r+76}{\sqrt{7}+\sqrt{11}+4}
The equation is in standard form.
\frac{\sqrt{7}q}{\sqrt{7}}=\frac{\left(3\sqrt{11}+5\sqrt{7}+2-2\sqrt{77}\right)\left(-4\sqrt{11}r-4\sqrt{77}s-7\sqrt{11}s-11\sqrt{7}s-\sqrt{7}p-\sqrt{11}p-\sqrt{77}r-4p-11r+76\right)}{76\sqrt{7}}
Divide both sides by \sqrt{7}.
q=\frac{\left(3\sqrt{11}+5\sqrt{7}+2-2\sqrt{77}\right)\left(-4\sqrt{11}r-4\sqrt{77}s-7\sqrt{11}s-11\sqrt{7}s-\sqrt{7}p-\sqrt{11}p-\sqrt{77}r-4p-11r+76\right)}{76\sqrt{7}}
Dividing by \sqrt{7} undoes the multiplication by \sqrt{7}.
q=\frac{\sqrt{7}\left(3\sqrt{11}+5\sqrt{7}+2-2\sqrt{77}\right)\left(-4\sqrt{11}r-4\sqrt{77}s-7\sqrt{11}s-11\sqrt{7}s-\sqrt{7}p-\sqrt{11}p-\sqrt{77}r-4p-11r+76\right)}{532}
Divide \frac{\left(-2\sqrt{77}+5\sqrt{7}+3\sqrt{11}+2\right)\left(76-4p-p\sqrt{7}-p\sqrt{11}-4r\sqrt{11}-r\sqrt{77}-11r-4s\sqrt{77}-7s\sqrt{11}-11s\sqrt{7}\right)}{76} by \sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}