\frac { 75.1 \% } { x } = \frac { 8.314 \times ( 36.8 + 273.15 ) } { 101 }
Solve for x
x=\frac{758510}{25769243}\approx 0.029434702
Graph
Share
Copied to clipboard
101\times \frac{75.1}{100}=x\times 8.314\left(36.8+273.15\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 101x, the least common multiple of x,101.
101\times \frac{751}{1000}=x\times 8.314\left(36.8+273.15\right)
Expand \frac{75.1}{100} by multiplying both numerator and the denominator by 10.
\frac{101\times 751}{1000}=x\times 8.314\left(36.8+273.15\right)
Express 101\times \frac{751}{1000} as a single fraction.
\frac{75851}{1000}=x\times 8.314\left(36.8+273.15\right)
Multiply 101 and 751 to get 75851.
\frac{75851}{1000}=x\times 8.314\times 309.95
Add 36.8 and 273.15 to get 309.95.
\frac{75851}{1000}=x\times 2576.9243
Multiply 8.314 and 309.95 to get 2576.9243.
x\times 2576.9243=\frac{75851}{1000}
Swap sides so that all variable terms are on the left hand side.
x=\frac{\frac{75851}{1000}}{2576.9243}
Divide both sides by 2576.9243.
x=\frac{75851}{1000\times 2576.9243}
Express \frac{\frac{75851}{1000}}{2576.9243} as a single fraction.
x=\frac{75851}{2576924.3}
Multiply 1000 and 2576.9243 to get 2576924.3.
x=\frac{758510}{25769243}
Expand \frac{75851}{2576924.3} by multiplying both numerator and the denominator by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}