Evaluate
\frac{75}{41}\approx 1.829268293
Factor
\frac{3 \cdot 5 ^ {2}}{41} = 1\frac{34}{41} = 1.829268292682927
Share
Copied to clipboard
\begin{array}{l}\phantom{41)}\phantom{1}\\41\overline{)75}\\\end{array}
Use the 1^{st} digit 7 from dividend 75
\begin{array}{l}\phantom{41)}0\phantom{2}\\41\overline{)75}\\\end{array}
Since 7 is less than 41, use the next digit 5 from dividend 75 and add 0 to the quotient
\begin{array}{l}\phantom{41)}0\phantom{3}\\41\overline{)75}\\\end{array}
Use the 2^{nd} digit 5 from dividend 75
\begin{array}{l}\phantom{41)}01\phantom{4}\\41\overline{)75}\\\phantom{41)}\underline{\phantom{}41\phantom{}}\\\phantom{41)}34\\\end{array}
Find closest multiple of 41 to 75. We see that 1 \times 41 = 41 is the nearest. Now subtract 41 from 75 to get reminder 34. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }34
Since 34 is less than 41, stop the division. The reminder is 34. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}