Evaluate
\frac{248}{7}\approx 35.428571429
Factor
\frac{2 ^ {3} \cdot 31}{7} = 35\frac{3}{7} = 35.42857142857143
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)744}\\\end{array}
Use the 1^{st} digit 7 from dividend 744
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)744}\\\end{array}
Since 7 is less than 21, use the next digit 4 from dividend 744 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)744}\\\end{array}
Use the 2^{nd} digit 4 from dividend 744
\begin{array}{l}\phantom{21)}03\phantom{4}\\21\overline{)744}\\\phantom{21)}\underline{\phantom{}63\phantom{9}}\\\phantom{21)}11\\\end{array}
Find closest multiple of 21 to 74. We see that 3 \times 21 = 63 is the nearest. Now subtract 63 from 74 to get reminder 11. Add 3 to quotient.
\begin{array}{l}\phantom{21)}03\phantom{5}\\21\overline{)744}\\\phantom{21)}\underline{\phantom{}63\phantom{9}}\\\phantom{21)}114\\\end{array}
Use the 3^{rd} digit 4 from dividend 744
\begin{array}{l}\phantom{21)}035\phantom{6}\\21\overline{)744}\\\phantom{21)}\underline{\phantom{}63\phantom{9}}\\\phantom{21)}114\\\phantom{21)}\underline{\phantom{}105\phantom{}}\\\phantom{21)99}9\\\end{array}
Find closest multiple of 21 to 114. We see that 5 \times 21 = 105 is the nearest. Now subtract 105 from 114 to get reminder 9. Add 5 to quotient.
\text{Quotient: }35 \text{Reminder: }9
Since 9 is less than 21, stop the division. The reminder is 9. The topmost line 035 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}