Evaluate
\frac{247}{49}\approx 5.040816327
Factor
\frac{13 \cdot 19}{7 ^ {2}} = 5\frac{2}{49} = 5.040816326530612
Share
Copied to clipboard
\begin{array}{l}\phantom{147)}\phantom{1}\\147\overline{)741}\\\end{array}
Use the 1^{st} digit 7 from dividend 741
\begin{array}{l}\phantom{147)}0\phantom{2}\\147\overline{)741}\\\end{array}
Since 7 is less than 147, use the next digit 4 from dividend 741 and add 0 to the quotient
\begin{array}{l}\phantom{147)}0\phantom{3}\\147\overline{)741}\\\end{array}
Use the 2^{nd} digit 4 from dividend 741
\begin{array}{l}\phantom{147)}00\phantom{4}\\147\overline{)741}\\\end{array}
Since 74 is less than 147, use the next digit 1 from dividend 741 and add 0 to the quotient
\begin{array}{l}\phantom{147)}00\phantom{5}\\147\overline{)741}\\\end{array}
Use the 3^{rd} digit 1 from dividend 741
\begin{array}{l}\phantom{147)}005\phantom{6}\\147\overline{)741}\\\phantom{147)}\underline{\phantom{}735\phantom{}}\\\phantom{147)99}6\\\end{array}
Find closest multiple of 147 to 741. We see that 5 \times 147 = 735 is the nearest. Now subtract 735 from 741 to get reminder 6. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }6
Since 6 is less than 147, stop the division. The reminder is 6. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}