Evaluate
\frac{364}{31}\approx 11.741935484
Factor
\frac{2 ^ {2} \cdot 7 \cdot 13}{31} = 11\frac{23}{31} = 11.741935483870968
Share
Copied to clipboard
\begin{array}{l}\phantom{62)}\phantom{1}\\62\overline{)728}\\\end{array}
Use the 1^{st} digit 7 from dividend 728
\begin{array}{l}\phantom{62)}0\phantom{2}\\62\overline{)728}\\\end{array}
Since 7 is less than 62, use the next digit 2 from dividend 728 and add 0 to the quotient
\begin{array}{l}\phantom{62)}0\phantom{3}\\62\overline{)728}\\\end{array}
Use the 2^{nd} digit 2 from dividend 728
\begin{array}{l}\phantom{62)}01\phantom{4}\\62\overline{)728}\\\phantom{62)}\underline{\phantom{}62\phantom{9}}\\\phantom{62)}10\\\end{array}
Find closest multiple of 62 to 72. We see that 1 \times 62 = 62 is the nearest. Now subtract 62 from 72 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{62)}01\phantom{5}\\62\overline{)728}\\\phantom{62)}\underline{\phantom{}62\phantom{9}}\\\phantom{62)}108\\\end{array}
Use the 3^{rd} digit 8 from dividend 728
\begin{array}{l}\phantom{62)}011\phantom{6}\\62\overline{)728}\\\phantom{62)}\underline{\phantom{}62\phantom{9}}\\\phantom{62)}108\\\phantom{62)}\underline{\phantom{9}62\phantom{}}\\\phantom{62)9}46\\\end{array}
Find closest multiple of 62 to 108. We see that 1 \times 62 = 62 is the nearest. Now subtract 62 from 108 to get reminder 46. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }46
Since 46 is less than 62, stop the division. The reminder is 46. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}