Evaluate
\frac{91}{31}\approx 2.935483871
Factor
\frac{7 \cdot 13}{31} = 2\frac{29}{31} = 2.935483870967742
Share
Copied to clipboard
\begin{array}{l}\phantom{248)}\phantom{1}\\248\overline{)728}\\\end{array}
Use the 1^{st} digit 7 from dividend 728
\begin{array}{l}\phantom{248)}0\phantom{2}\\248\overline{)728}\\\end{array}
Since 7 is less than 248, use the next digit 2 from dividend 728 and add 0 to the quotient
\begin{array}{l}\phantom{248)}0\phantom{3}\\248\overline{)728}\\\end{array}
Use the 2^{nd} digit 2 from dividend 728
\begin{array}{l}\phantom{248)}00\phantom{4}\\248\overline{)728}\\\end{array}
Since 72 is less than 248, use the next digit 8 from dividend 728 and add 0 to the quotient
\begin{array}{l}\phantom{248)}00\phantom{5}\\248\overline{)728}\\\end{array}
Use the 3^{rd} digit 8 from dividend 728
\begin{array}{l}\phantom{248)}002\phantom{6}\\248\overline{)728}\\\phantom{248)}\underline{\phantom{}496\phantom{}}\\\phantom{248)}232\\\end{array}
Find closest multiple of 248 to 728. We see that 2 \times 248 = 496 is the nearest. Now subtract 496 from 728 to get reminder 232. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }232
Since 232 is less than 248, stop the division. The reminder is 232. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}