Evaluate
\frac{3633}{370}\approx 9.818918919
Factor
\frac{3 \cdot 7 \cdot 173}{2 \cdot 5 \cdot 37} = 9\frac{303}{370} = 9.81891891891892
Share
Copied to clipboard
\begin{array}{l}\phantom{740)}\phantom{1}\\740\overline{)7266}\\\end{array}
Use the 1^{st} digit 7 from dividend 7266
\begin{array}{l}\phantom{740)}0\phantom{2}\\740\overline{)7266}\\\end{array}
Since 7 is less than 740, use the next digit 2 from dividend 7266 and add 0 to the quotient
\begin{array}{l}\phantom{740)}0\phantom{3}\\740\overline{)7266}\\\end{array}
Use the 2^{nd} digit 2 from dividend 7266
\begin{array}{l}\phantom{740)}00\phantom{4}\\740\overline{)7266}\\\end{array}
Since 72 is less than 740, use the next digit 6 from dividend 7266 and add 0 to the quotient
\begin{array}{l}\phantom{740)}00\phantom{5}\\740\overline{)7266}\\\end{array}
Use the 3^{rd} digit 6 from dividend 7266
\begin{array}{l}\phantom{740)}000\phantom{6}\\740\overline{)7266}\\\end{array}
Since 726 is less than 740, use the next digit 6 from dividend 7266 and add 0 to the quotient
\begin{array}{l}\phantom{740)}000\phantom{7}\\740\overline{)7266}\\\end{array}
Use the 4^{th} digit 6 from dividend 7266
\begin{array}{l}\phantom{740)}0009\phantom{8}\\740\overline{)7266}\\\phantom{740)}\underline{\phantom{}6660\phantom{}}\\\phantom{740)9}606\\\end{array}
Find closest multiple of 740 to 7266. We see that 9 \times 740 = 6660 is the nearest. Now subtract 6660 from 7266 to get reminder 606. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }606
Since 606 is less than 740, stop the division. The reminder is 606. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}