Evaluate
\frac{241}{15}\approx 16.066666667
Factor
\frac{241}{3 \cdot 5} = 16\frac{1}{15} = 16.066666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)723}\\\end{array}
Use the 1^{st} digit 7 from dividend 723
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)723}\\\end{array}
Since 7 is less than 45, use the next digit 2 from dividend 723 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)723}\\\end{array}
Use the 2^{nd} digit 2 from dividend 723
\begin{array}{l}\phantom{45)}01\phantom{4}\\45\overline{)723}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)}27\\\end{array}
Find closest multiple of 45 to 72. We see that 1 \times 45 = 45 is the nearest. Now subtract 45 from 72 to get reminder 27. Add 1 to quotient.
\begin{array}{l}\phantom{45)}01\phantom{5}\\45\overline{)723}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)}273\\\end{array}
Use the 3^{rd} digit 3 from dividend 723
\begin{array}{l}\phantom{45)}016\phantom{6}\\45\overline{)723}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)}273\\\phantom{45)}\underline{\phantom{}270\phantom{}}\\\phantom{45)99}3\\\end{array}
Find closest multiple of 45 to 273. We see that 6 \times 45 = 270 is the nearest. Now subtract 270 from 273 to get reminder 3. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }3
Since 3 is less than 45, stop the division. The reminder is 3. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}