Solve for x
x = \frac{4 \sqrt{274} + 8}{5} \approx 14.842356286
x=\frac{8-4\sqrt{274}}{5}\approx -11.642356286
Graph
Share
Copied to clipboard
\left(x+4\right)\times 7200\left(1+0.2\right)-x\times 7200=200x\left(x+4\right)
Variable x cannot be equal to any of the values -4,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+4\right), the least common multiple of x,x+4.
\left(x+4\right)\times 7200\times 1.2-x\times 7200=200x\left(x+4\right)
Add 1 and 0.2 to get 1.2.
\left(x+4\right)\times 8640-x\times 7200=200x\left(x+4\right)
Multiply 7200 and 1.2 to get 8640.
8640x+34560-x\times 7200=200x\left(x+4\right)
Use the distributive property to multiply x+4 by 8640.
8640x+34560-x\times 7200=200x^{2}+800x
Use the distributive property to multiply 200x by x+4.
8640x+34560-x\times 7200-200x^{2}=800x
Subtract 200x^{2} from both sides.
8640x+34560-x\times 7200-200x^{2}-800x=0
Subtract 800x from both sides.
7840x+34560-x\times 7200-200x^{2}=0
Combine 8640x and -800x to get 7840x.
7840x+34560-7200x-200x^{2}=0
Multiply -1 and 7200 to get -7200.
640x+34560-200x^{2}=0
Combine 7840x and -7200x to get 640x.
-200x^{2}+640x+34560=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-640±\sqrt{640^{2}-4\left(-200\right)\times 34560}}{2\left(-200\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -200 for a, 640 for b, and 34560 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-640±\sqrt{409600-4\left(-200\right)\times 34560}}{2\left(-200\right)}
Square 640.
x=\frac{-640±\sqrt{409600+800\times 34560}}{2\left(-200\right)}
Multiply -4 times -200.
x=\frac{-640±\sqrt{409600+27648000}}{2\left(-200\right)}
Multiply 800 times 34560.
x=\frac{-640±\sqrt{28057600}}{2\left(-200\right)}
Add 409600 to 27648000.
x=\frac{-640±320\sqrt{274}}{2\left(-200\right)}
Take the square root of 28057600.
x=\frac{-640±320\sqrt{274}}{-400}
Multiply 2 times -200.
x=\frac{320\sqrt{274}-640}{-400}
Now solve the equation x=\frac{-640±320\sqrt{274}}{-400} when ± is plus. Add -640 to 320\sqrt{274}.
x=\frac{8-4\sqrt{274}}{5}
Divide -640+320\sqrt{274} by -400.
x=\frac{-320\sqrt{274}-640}{-400}
Now solve the equation x=\frac{-640±320\sqrt{274}}{-400} when ± is minus. Subtract 320\sqrt{274} from -640.
x=\frac{4\sqrt{274}+8}{5}
Divide -640-320\sqrt{274} by -400.
x=\frac{8-4\sqrt{274}}{5} x=\frac{4\sqrt{274}+8}{5}
The equation is now solved.
\left(x+4\right)\times 7200\left(1+0.2\right)-x\times 7200=200x\left(x+4\right)
Variable x cannot be equal to any of the values -4,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+4\right), the least common multiple of x,x+4.
\left(x+4\right)\times 7200\times 1.2-x\times 7200=200x\left(x+4\right)
Add 1 and 0.2 to get 1.2.
\left(x+4\right)\times 8640-x\times 7200=200x\left(x+4\right)
Multiply 7200 and 1.2 to get 8640.
8640x+34560-x\times 7200=200x\left(x+4\right)
Use the distributive property to multiply x+4 by 8640.
8640x+34560-x\times 7200=200x^{2}+800x
Use the distributive property to multiply 200x by x+4.
8640x+34560-x\times 7200-200x^{2}=800x
Subtract 200x^{2} from both sides.
8640x+34560-x\times 7200-200x^{2}-800x=0
Subtract 800x from both sides.
7840x+34560-x\times 7200-200x^{2}=0
Combine 8640x and -800x to get 7840x.
7840x-x\times 7200-200x^{2}=-34560
Subtract 34560 from both sides. Anything subtracted from zero gives its negation.
7840x-7200x-200x^{2}=-34560
Multiply -1 and 7200 to get -7200.
640x-200x^{2}=-34560
Combine 7840x and -7200x to get 640x.
-200x^{2}+640x=-34560
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-200x^{2}+640x}{-200}=-\frac{34560}{-200}
Divide both sides by -200.
x^{2}+\frac{640}{-200}x=-\frac{34560}{-200}
Dividing by -200 undoes the multiplication by -200.
x^{2}-\frac{16}{5}x=-\frac{34560}{-200}
Reduce the fraction \frac{640}{-200} to lowest terms by extracting and canceling out 40.
x^{2}-\frac{16}{5}x=\frac{864}{5}
Reduce the fraction \frac{-34560}{-200} to lowest terms by extracting and canceling out 40.
x^{2}-\frac{16}{5}x+\left(-\frac{8}{5}\right)^{2}=\frac{864}{5}+\left(-\frac{8}{5}\right)^{2}
Divide -\frac{16}{5}, the coefficient of the x term, by 2 to get -\frac{8}{5}. Then add the square of -\frac{8}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{5}x+\frac{64}{25}=\frac{864}{5}+\frac{64}{25}
Square -\frac{8}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{5}x+\frac{64}{25}=\frac{4384}{25}
Add \frac{864}{5} to \frac{64}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{8}{5}\right)^{2}=\frac{4384}{25}
Factor x^{2}-\frac{16}{5}x+\frac{64}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{5}\right)^{2}}=\sqrt{\frac{4384}{25}}
Take the square root of both sides of the equation.
x-\frac{8}{5}=\frac{4\sqrt{274}}{5} x-\frac{8}{5}=-\frac{4\sqrt{274}}{5}
Simplify.
x=\frac{4\sqrt{274}+8}{5} x=\frac{8-4\sqrt{274}}{5}
Add \frac{8}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}