Solve for x
x=-5
x=30
Graph
Share
Copied to clipboard
\left(x-10\right)\times 72\left(x+10\right)+x\times 72\left(x+10\right)=\left(x-10\right)\times 144\left(x+10\right)+x\left(x-10\right)\times 48
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by x\left(x-10\right), the least common multiple of x,x-10.
\left(72x-720\right)\left(x+10\right)+x\times 72\left(x+10\right)=\left(x-10\right)\times 144\left(x+10\right)+x\left(x-10\right)\times 48
Use the distributive property to multiply x-10 by 72.
72x^{2}-7200+x\times 72\left(x+10\right)=\left(x-10\right)\times 144\left(x+10\right)+x\left(x-10\right)\times 48
Use the distributive property to multiply 72x-720 by x+10 and combine like terms.
72x^{2}-7200+72x^{2}+10x\times 72=\left(x-10\right)\times 144\left(x+10\right)+x\left(x-10\right)\times 48
Use the distributive property to multiply x\times 72 by x+10.
72x^{2}-7200+72x^{2}+720x=\left(x-10\right)\times 144\left(x+10\right)+x\left(x-10\right)\times 48
Multiply 10 and 72 to get 720.
144x^{2}-7200+720x=\left(x-10\right)\times 144\left(x+10\right)+x\left(x-10\right)\times 48
Combine 72x^{2} and 72x^{2} to get 144x^{2}.
144x^{2}-7200+720x=\left(144x-1440\right)\left(x+10\right)+x\left(x-10\right)\times 48
Use the distributive property to multiply x-10 by 144.
144x^{2}-7200+720x=144x^{2}-14400+x\left(x-10\right)\times 48
Use the distributive property to multiply 144x-1440 by x+10 and combine like terms.
144x^{2}-7200+720x=144x^{2}-14400+\left(x^{2}-10x\right)\times 48
Use the distributive property to multiply x by x-10.
144x^{2}-7200+720x=144x^{2}-14400+48x^{2}-480x
Use the distributive property to multiply x^{2}-10x by 48.
144x^{2}-7200+720x=192x^{2}-14400-480x
Combine 144x^{2} and 48x^{2} to get 192x^{2}.
144x^{2}-7200+720x-192x^{2}=-14400-480x
Subtract 192x^{2} from both sides.
-48x^{2}-7200+720x=-14400-480x
Combine 144x^{2} and -192x^{2} to get -48x^{2}.
-48x^{2}-7200+720x-\left(-14400\right)=-480x
Subtract -14400 from both sides.
-48x^{2}-7200+720x+14400=-480x
The opposite of -14400 is 14400.
-48x^{2}-7200+720x+14400+480x=0
Add 480x to both sides.
-48x^{2}+7200+720x+480x=0
Add -7200 and 14400 to get 7200.
-48x^{2}+7200+1200x=0
Combine 720x and 480x to get 1200x.
-48x^{2}+1200x+7200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1200±\sqrt{1200^{2}-4\left(-48\right)\times 7200}}{2\left(-48\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -48 for a, 1200 for b, and 7200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1200±\sqrt{1440000-4\left(-48\right)\times 7200}}{2\left(-48\right)}
Square 1200.
x=\frac{-1200±\sqrt{1440000+192\times 7200}}{2\left(-48\right)}
Multiply -4 times -48.
x=\frac{-1200±\sqrt{1440000+1382400}}{2\left(-48\right)}
Multiply 192 times 7200.
x=\frac{-1200±\sqrt{2822400}}{2\left(-48\right)}
Add 1440000 to 1382400.
x=\frac{-1200±1680}{2\left(-48\right)}
Take the square root of 2822400.
x=\frac{-1200±1680}{-96}
Multiply 2 times -48.
x=\frac{480}{-96}
Now solve the equation x=\frac{-1200±1680}{-96} when ± is plus. Add -1200 to 1680.
x=-5
Divide 480 by -96.
x=-\frac{2880}{-96}
Now solve the equation x=\frac{-1200±1680}{-96} when ± is minus. Subtract 1680 from -1200.
x=30
Divide -2880 by -96.
x=-5 x=30
The equation is now solved.
\left(x-10\right)\times 72\left(x+10\right)+x\times 72\left(x+10\right)=\left(x-10\right)\times 144\left(x+10\right)+x\left(x-10\right)\times 48
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by x\left(x-10\right), the least common multiple of x,x-10.
\left(72x-720\right)\left(x+10\right)+x\times 72\left(x+10\right)=\left(x-10\right)\times 144\left(x+10\right)+x\left(x-10\right)\times 48
Use the distributive property to multiply x-10 by 72.
72x^{2}-7200+x\times 72\left(x+10\right)=\left(x-10\right)\times 144\left(x+10\right)+x\left(x-10\right)\times 48
Use the distributive property to multiply 72x-720 by x+10 and combine like terms.
72x^{2}-7200+72x^{2}+10x\times 72=\left(x-10\right)\times 144\left(x+10\right)+x\left(x-10\right)\times 48
Use the distributive property to multiply x\times 72 by x+10.
72x^{2}-7200+72x^{2}+720x=\left(x-10\right)\times 144\left(x+10\right)+x\left(x-10\right)\times 48
Multiply 10 and 72 to get 720.
144x^{2}-7200+720x=\left(x-10\right)\times 144\left(x+10\right)+x\left(x-10\right)\times 48
Combine 72x^{2} and 72x^{2} to get 144x^{2}.
144x^{2}-7200+720x=\left(144x-1440\right)\left(x+10\right)+x\left(x-10\right)\times 48
Use the distributive property to multiply x-10 by 144.
144x^{2}-7200+720x=144x^{2}-14400+x\left(x-10\right)\times 48
Use the distributive property to multiply 144x-1440 by x+10 and combine like terms.
144x^{2}-7200+720x=144x^{2}-14400+\left(x^{2}-10x\right)\times 48
Use the distributive property to multiply x by x-10.
144x^{2}-7200+720x=144x^{2}-14400+48x^{2}-480x
Use the distributive property to multiply x^{2}-10x by 48.
144x^{2}-7200+720x=192x^{2}-14400-480x
Combine 144x^{2} and 48x^{2} to get 192x^{2}.
144x^{2}-7200+720x-192x^{2}=-14400-480x
Subtract 192x^{2} from both sides.
-48x^{2}-7200+720x=-14400-480x
Combine 144x^{2} and -192x^{2} to get -48x^{2}.
-48x^{2}-7200+720x+480x=-14400
Add 480x to both sides.
-48x^{2}-7200+1200x=-14400
Combine 720x and 480x to get 1200x.
-48x^{2}+1200x=-14400+7200
Add 7200 to both sides.
-48x^{2}+1200x=-7200
Add -14400 and 7200 to get -7200.
\frac{-48x^{2}+1200x}{-48}=-\frac{7200}{-48}
Divide both sides by -48.
x^{2}+\frac{1200}{-48}x=-\frac{7200}{-48}
Dividing by -48 undoes the multiplication by -48.
x^{2}-25x=-\frac{7200}{-48}
Divide 1200 by -48.
x^{2}-25x=150
Divide -7200 by -48.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=150+\left(-\frac{25}{2}\right)^{2}
Divide -25, the coefficient of the x term, by 2 to get -\frac{25}{2}. Then add the square of -\frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-25x+\frac{625}{4}=150+\frac{625}{4}
Square -\frac{25}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-25x+\frac{625}{4}=\frac{1225}{4}
Add 150 to \frac{625}{4}.
\left(x-\frac{25}{2}\right)^{2}=\frac{1225}{4}
Factor x^{2}-25x+\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{1225}{4}}
Take the square root of both sides of the equation.
x-\frac{25}{2}=\frac{35}{2} x-\frac{25}{2}=-\frac{35}{2}
Simplify.
x=30 x=-5
Add \frac{25}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}