Solve for x
x = \frac{\sqrt{5281} + 35}{26} \approx 4.141172661
x=\frac{35-\sqrt{5281}}{26}\approx -1.448864969
Graph
Share
Copied to clipboard
\left(x-3\right)\times 72+\left(x+3\right)\times 33=39\left(x-3\right)\left(x+3\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x+3,x-3.
72x-216+\left(x+3\right)\times 33=39\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply x-3 by 72.
72x-216+33x+99=39\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply x+3 by 33.
105x-216+99=39\left(x-3\right)\left(x+3\right)
Combine 72x and 33x to get 105x.
105x-117=39\left(x-3\right)\left(x+3\right)
Add -216 and 99 to get -117.
105x-117=\left(39x-117\right)\left(x+3\right)
Use the distributive property to multiply 39 by x-3.
105x-117=39x^{2}-351
Use the distributive property to multiply 39x-117 by x+3 and combine like terms.
105x-117-39x^{2}=-351
Subtract 39x^{2} from both sides.
105x-117-39x^{2}+351=0
Add 351 to both sides.
105x+234-39x^{2}=0
Add -117 and 351 to get 234.
-39x^{2}+105x+234=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-105±\sqrt{105^{2}-4\left(-39\right)\times 234}}{2\left(-39\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -39 for a, 105 for b, and 234 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-105±\sqrt{11025-4\left(-39\right)\times 234}}{2\left(-39\right)}
Square 105.
x=\frac{-105±\sqrt{11025+156\times 234}}{2\left(-39\right)}
Multiply -4 times -39.
x=\frac{-105±\sqrt{11025+36504}}{2\left(-39\right)}
Multiply 156 times 234.
x=\frac{-105±\sqrt{47529}}{2\left(-39\right)}
Add 11025 to 36504.
x=\frac{-105±3\sqrt{5281}}{2\left(-39\right)}
Take the square root of 47529.
x=\frac{-105±3\sqrt{5281}}{-78}
Multiply 2 times -39.
x=\frac{3\sqrt{5281}-105}{-78}
Now solve the equation x=\frac{-105±3\sqrt{5281}}{-78} when ± is plus. Add -105 to 3\sqrt{5281}.
x=\frac{35-\sqrt{5281}}{26}
Divide -105+3\sqrt{5281} by -78.
x=\frac{-3\sqrt{5281}-105}{-78}
Now solve the equation x=\frac{-105±3\sqrt{5281}}{-78} when ± is minus. Subtract 3\sqrt{5281} from -105.
x=\frac{\sqrt{5281}+35}{26}
Divide -105-3\sqrt{5281} by -78.
x=\frac{35-\sqrt{5281}}{26} x=\frac{\sqrt{5281}+35}{26}
The equation is now solved.
\left(x-3\right)\times 72+\left(x+3\right)\times 33=39\left(x-3\right)\left(x+3\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x+3,x-3.
72x-216+\left(x+3\right)\times 33=39\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply x-3 by 72.
72x-216+33x+99=39\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply x+3 by 33.
105x-216+99=39\left(x-3\right)\left(x+3\right)
Combine 72x and 33x to get 105x.
105x-117=39\left(x-3\right)\left(x+3\right)
Add -216 and 99 to get -117.
105x-117=\left(39x-117\right)\left(x+3\right)
Use the distributive property to multiply 39 by x-3.
105x-117=39x^{2}-351
Use the distributive property to multiply 39x-117 by x+3 and combine like terms.
105x-117-39x^{2}=-351
Subtract 39x^{2} from both sides.
105x-39x^{2}=-351+117
Add 117 to both sides.
105x-39x^{2}=-234
Add -351 and 117 to get -234.
-39x^{2}+105x=-234
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-39x^{2}+105x}{-39}=-\frac{234}{-39}
Divide both sides by -39.
x^{2}+\frac{105}{-39}x=-\frac{234}{-39}
Dividing by -39 undoes the multiplication by -39.
x^{2}-\frac{35}{13}x=-\frac{234}{-39}
Reduce the fraction \frac{105}{-39} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{35}{13}x=6
Divide -234 by -39.
x^{2}-\frac{35}{13}x+\left(-\frac{35}{26}\right)^{2}=6+\left(-\frac{35}{26}\right)^{2}
Divide -\frac{35}{13}, the coefficient of the x term, by 2 to get -\frac{35}{26}. Then add the square of -\frac{35}{26} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{35}{13}x+\frac{1225}{676}=6+\frac{1225}{676}
Square -\frac{35}{26} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{35}{13}x+\frac{1225}{676}=\frac{5281}{676}
Add 6 to \frac{1225}{676}.
\left(x-\frac{35}{26}\right)^{2}=\frac{5281}{676}
Factor x^{2}-\frac{35}{13}x+\frac{1225}{676}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{26}\right)^{2}}=\sqrt{\frac{5281}{676}}
Take the square root of both sides of the equation.
x-\frac{35}{26}=\frac{\sqrt{5281}}{26} x-\frac{35}{26}=-\frac{\sqrt{5281}}{26}
Simplify.
x=\frac{\sqrt{5281}+35}{26} x=\frac{35-\sqrt{5281}}{26}
Add \frac{35}{26} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}