Verify
false
Share
Copied to clipboard
\frac{72}{19}\times \frac{5}{2}=\frac{12\times 5}{15\times 2}\text{ and }\frac{12\times 5}{15\times 2}=\frac{60}{30}
Divide \frac{72}{19} by \frac{2}{5} by multiplying \frac{72}{19} by the reciprocal of \frac{2}{5}.
\frac{72\times 5}{19\times 2}=\frac{12\times 5}{15\times 2}\text{ and }\frac{12\times 5}{15\times 2}=\frac{60}{30}
Multiply \frac{72}{19} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{360}{38}=\frac{12\times 5}{15\times 2}\text{ and }\frac{12\times 5}{15\times 2}=\frac{60}{30}
Do the multiplications in the fraction \frac{72\times 5}{19\times 2}.
\frac{180}{19}=\frac{12\times 5}{15\times 2}\text{ and }\frac{12\times 5}{15\times 2}=\frac{60}{30}
Reduce the fraction \frac{360}{38} to lowest terms by extracting and canceling out 2.
\frac{180}{19}=2\text{ and }\frac{12\times 5}{15\times 2}=\frac{60}{30}
Cancel out 2\times 3\times 5 in both numerator and denominator.
\frac{180}{19}=\frac{38}{19}\text{ and }\frac{12\times 5}{15\times 2}=\frac{60}{30}
Convert 2 to fraction \frac{38}{19}.
\text{false}\text{ and }\frac{12\times 5}{15\times 2}=\frac{60}{30}
Compare \frac{180}{19} and \frac{38}{19}.
\text{false}\text{ and }2=\frac{60}{30}
Cancel out 2\times 3\times 5 in both numerator and denominator.
\text{false}\text{ and }2=2
Divide 60 by 30 to get 2.
\text{false}\text{ and }\text{true}
Compare 2 and 2.
\text{false}
The conjunction of \text{false} and \text{true} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}