Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

72^{2}-4\times 28\left(48-3k^{2}\right)=0
Multiply both sides by 4. Anything times zero gives zero.
5184-4\times 28\left(48-3k^{2}\right)=0
Calculate 72 to the power of 2 and get 5184.
5184-112\left(48-3k^{2}\right)=0
Multiply 4 and 28 to get 112.
5184-5376+336k^{2}=0
Use the distributive property to multiply -112 by 48-3k^{2}.
-192+336k^{2}=0
Subtract 5376 from 5184 to get -192.
336k^{2}=192
Add 192 to both sides. Anything plus zero gives itself.
k^{2}=\frac{192}{336}
Divide both sides by 336.
k^{2}=\frac{4}{7}
Reduce the fraction \frac{192}{336} to lowest terms by extracting and canceling out 48.
k=\frac{2\sqrt{7}}{7} k=-\frac{2\sqrt{7}}{7}
Take the square root of both sides of the equation.
72^{2}-4\times 28\left(48-3k^{2}\right)=0
Multiply both sides by 4. Anything times zero gives zero.
5184-4\times 28\left(48-3k^{2}\right)=0
Calculate 72 to the power of 2 and get 5184.
5184-112\left(48-3k^{2}\right)=0
Multiply 4 and 28 to get 112.
5184-5376+336k^{2}=0
Use the distributive property to multiply -112 by 48-3k^{2}.
-192+336k^{2}=0
Subtract 5376 from 5184 to get -192.
336k^{2}-192=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\times 336\left(-192\right)}}{2\times 336}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 336 for a, 0 for b, and -192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\times 336\left(-192\right)}}{2\times 336}
Square 0.
k=\frac{0±\sqrt{-1344\left(-192\right)}}{2\times 336}
Multiply -4 times 336.
k=\frac{0±\sqrt{258048}}{2\times 336}
Multiply -1344 times -192.
k=\frac{0±192\sqrt{7}}{2\times 336}
Take the square root of 258048.
k=\frac{0±192\sqrt{7}}{672}
Multiply 2 times 336.
k=\frac{2\sqrt{7}}{7}
Now solve the equation k=\frac{0±192\sqrt{7}}{672} when ± is plus.
k=-\frac{2\sqrt{7}}{7}
Now solve the equation k=\frac{0±192\sqrt{7}}{672} when ± is minus.
k=\frac{2\sqrt{7}}{7} k=-\frac{2\sqrt{7}}{7}
The equation is now solved.