Evaluate
\frac{7141}{5131}\approx 1.391736504
Factor
\frac{37 \cdot 193}{7 \cdot 733} = 1\frac{2010}{5131} = 1.391736503605535
Share
Copied to clipboard
\begin{array}{l}\phantom{5131)}\phantom{1}\\5131\overline{)7141}\\\end{array}
Use the 1^{st} digit 7 from dividend 7141
\begin{array}{l}\phantom{5131)}0\phantom{2}\\5131\overline{)7141}\\\end{array}
Since 7 is less than 5131, use the next digit 1 from dividend 7141 and add 0 to the quotient
\begin{array}{l}\phantom{5131)}0\phantom{3}\\5131\overline{)7141}\\\end{array}
Use the 2^{nd} digit 1 from dividend 7141
\begin{array}{l}\phantom{5131)}00\phantom{4}\\5131\overline{)7141}\\\end{array}
Since 71 is less than 5131, use the next digit 4 from dividend 7141 and add 0 to the quotient
\begin{array}{l}\phantom{5131)}00\phantom{5}\\5131\overline{)7141}\\\end{array}
Use the 3^{rd} digit 4 from dividend 7141
\begin{array}{l}\phantom{5131)}000\phantom{6}\\5131\overline{)7141}\\\end{array}
Since 714 is less than 5131, use the next digit 1 from dividend 7141 and add 0 to the quotient
\begin{array}{l}\phantom{5131)}000\phantom{7}\\5131\overline{)7141}\\\end{array}
Use the 4^{th} digit 1 from dividend 7141
\begin{array}{l}\phantom{5131)}0001\phantom{8}\\5131\overline{)7141}\\\phantom{5131)}\underline{\phantom{}5131\phantom{}}\\\phantom{5131)}2010\\\end{array}
Find closest multiple of 5131 to 7141. We see that 1 \times 5131 = 5131 is the nearest. Now subtract 5131 from 7141 to get reminder 2010. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }2010
Since 2010 is less than 5131, stop the division. The reminder is 2010. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}