Evaluate
\frac{177}{7}\approx 25.285714286
Factor
\frac{3 \cdot 59}{7} = 25\frac{2}{7} = 25.285714285714285
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)708}\\\end{array}
Use the 1^{st} digit 7 from dividend 708
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)708}\\\end{array}
Since 7 is less than 28, use the next digit 0 from dividend 708 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)708}\\\end{array}
Use the 2^{nd} digit 0 from dividend 708
\begin{array}{l}\phantom{28)}02\phantom{4}\\28\overline{)708}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)}14\\\end{array}
Find closest multiple of 28 to 70. We see that 2 \times 28 = 56 is the nearest. Now subtract 56 from 70 to get reminder 14. Add 2 to quotient.
\begin{array}{l}\phantom{28)}02\phantom{5}\\28\overline{)708}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)}148\\\end{array}
Use the 3^{rd} digit 8 from dividend 708
\begin{array}{l}\phantom{28)}025\phantom{6}\\28\overline{)708}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)}148\\\phantom{28)}\underline{\phantom{}140\phantom{}}\\\phantom{28)99}8\\\end{array}
Find closest multiple of 28 to 148. We see that 5 \times 28 = 140 is the nearest. Now subtract 140 from 148 to get reminder 8. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }8
Since 8 is less than 28, stop the division. The reminder is 8. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}