Evaluate
\frac{705}{76}\approx 9.276315789
Factor
\frac{3 \cdot 5 \cdot 47}{2 ^ {2} \cdot 19} = 9\frac{21}{76} = 9.276315789473685
Share
Copied to clipboard
\begin{array}{l}\phantom{76)}\phantom{1}\\76\overline{)705}\\\end{array}
Use the 1^{st} digit 7 from dividend 705
\begin{array}{l}\phantom{76)}0\phantom{2}\\76\overline{)705}\\\end{array}
Since 7 is less than 76, use the next digit 0 from dividend 705 and add 0 to the quotient
\begin{array}{l}\phantom{76)}0\phantom{3}\\76\overline{)705}\\\end{array}
Use the 2^{nd} digit 0 from dividend 705
\begin{array}{l}\phantom{76)}00\phantom{4}\\76\overline{)705}\\\end{array}
Since 70 is less than 76, use the next digit 5 from dividend 705 and add 0 to the quotient
\begin{array}{l}\phantom{76)}00\phantom{5}\\76\overline{)705}\\\end{array}
Use the 3^{rd} digit 5 from dividend 705
\begin{array}{l}\phantom{76)}009\phantom{6}\\76\overline{)705}\\\phantom{76)}\underline{\phantom{}684\phantom{}}\\\phantom{76)9}21\\\end{array}
Find closest multiple of 76 to 705. We see that 9 \times 76 = 684 is the nearest. Now subtract 684 from 705 to get reminder 21. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }21
Since 21 is less than 76, stop the division. The reminder is 21. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}