Solve for a (complex solution)
a=-\frac{2x^{2}}{5}+14
x\neq -\sqrt{35}\text{ and }x\neq \sqrt{35}
Solve for a
a=-\frac{2x^{2}}{5}+14
|x|\neq \sqrt{35}
Solve for x (complex solution)
x=-\frac{\sqrt{140-10a}}{2}
x=\frac{\sqrt{140-10a}}{2}\text{, }a\neq 0
Solve for x
x=\frac{\sqrt{140-10a}}{2}
x=-\frac{\sqrt{140-10a}}{2}\text{, }a\leq 14\text{ and }a\neq 0
Graph
Share
Copied to clipboard
70-2x^{2}=5a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
5a=70-2x^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{5a}{5}=\frac{70-2x^{2}}{5}
Divide both sides by 5.
a=\frac{70-2x^{2}}{5}
Dividing by 5 undoes the multiplication by 5.
a=-\frac{2x^{2}}{5}+14
Divide 70-2x^{2} by 5.
a=-\frac{2x^{2}}{5}+14\text{, }a\neq 0
Variable a cannot be equal to 0.
70-2x^{2}=5a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
5a=70-2x^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{5a}{5}=\frac{70-2x^{2}}{5}
Divide both sides by 5.
a=\frac{70-2x^{2}}{5}
Dividing by 5 undoes the multiplication by 5.
a=-\frac{2x^{2}}{5}+14
Divide 70-2x^{2} by 5.
a=-\frac{2x^{2}}{5}+14\text{, }a\neq 0
Variable a cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}