Solve for y
y=\frac{\sqrt{91}i}{14}-\frac{1}{2}
y=-\frac{\sqrt{91}i}{14}-\frac{1}{2}\text{, }x\neq -4
Solve for x
x\neq -4
y=\frac{\sqrt{91}i}{14}-\frac{1}{2}\text{ or }y=-\frac{\sqrt{91}i}{14}-\frac{1}{2}
Share
Copied to clipboard
7y^{2}+7y+5=0
Multiply both sides of the equation by x+4.
y=\frac{-7±\sqrt{7^{2}-4\times 7\times 5}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 7 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-7±\sqrt{49-4\times 7\times 5}}{2\times 7}
Square 7.
y=\frac{-7±\sqrt{49-28\times 5}}{2\times 7}
Multiply -4 times 7.
y=\frac{-7±\sqrt{49-140}}{2\times 7}
Multiply -28 times 5.
y=\frac{-7±\sqrt{-91}}{2\times 7}
Add 49 to -140.
y=\frac{-7±\sqrt{91}i}{2\times 7}
Take the square root of -91.
y=\frac{-7±\sqrt{91}i}{14}
Multiply 2 times 7.
y=\frac{-7+\sqrt{91}i}{14}
Now solve the equation y=\frac{-7±\sqrt{91}i}{14} when ± is plus. Add -7 to i\sqrt{91}.
y=\frac{\sqrt{91}i}{14}-\frac{1}{2}
Divide -7+i\sqrt{91} by 14.
y=\frac{-\sqrt{91}i-7}{14}
Now solve the equation y=\frac{-7±\sqrt{91}i}{14} when ± is minus. Subtract i\sqrt{91} from -7.
y=-\frac{\sqrt{91}i}{14}-\frac{1}{2}
Divide -7-i\sqrt{91} by 14.
y=\frac{\sqrt{91}i}{14}-\frac{1}{2} y=-\frac{\sqrt{91}i}{14}-\frac{1}{2}
The equation is now solved.
7y^{2}+7y+5=0
Multiply both sides of the equation by x+4.
7y^{2}+7y=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
\frac{7y^{2}+7y}{7}=-\frac{5}{7}
Divide both sides by 7.
y^{2}+\frac{7}{7}y=-\frac{5}{7}
Dividing by 7 undoes the multiplication by 7.
y^{2}+y=-\frac{5}{7}
Divide 7 by 7.
y^{2}+y+\left(\frac{1}{2}\right)^{2}=-\frac{5}{7}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+y+\frac{1}{4}=-\frac{5}{7}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}+y+\frac{1}{4}=-\frac{13}{28}
Add -\frac{5}{7} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{1}{2}\right)^{2}=-\frac{13}{28}
Factor y^{2}+y+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{13}{28}}
Take the square root of both sides of the equation.
y+\frac{1}{2}=\frac{\sqrt{91}i}{14} y+\frac{1}{2}=-\frac{\sqrt{91}i}{14}
Simplify.
y=\frac{\sqrt{91}i}{14}-\frac{1}{2} y=-\frac{\sqrt{91}i}{14}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}