Solve for y
y\in \left(-\infty,-2\right)\cup \left(-\frac{4}{5},\infty\right)
Graph
Share
Copied to clipboard
y+2>0 y+2<0
Denominator y+2 cannot be zero since division by zero is not defined. There are two cases.
y>-2
Consider the case when y+2 is positive. Move 2 to the right hand side.
7y+4>-\frac{4}{3}\left(y+2\right)
The initial inequality does not change the direction when multiplied by y+2 for y+2>0.
7y+4>-\frac{4}{3}y-\frac{8}{3}
Multiply out the right hand side.
7y+\frac{4}{3}y>-4-\frac{8}{3}
Move the terms containing y to the left hand side and all other terms to the right hand side.
\frac{25}{3}y>-\frac{20}{3}
Combine like terms.
y>-\frac{4}{5}
Divide both sides by \frac{25}{3}. Since \frac{25}{3} is positive, the inequality direction remains the same.
y>-\frac{4}{5}
Consider condition y>-2 specified above. The result remains the same.
y<-2
Now consider the case when y+2 is negative. Move 2 to the right hand side.
7y+4<-\frac{4}{3}\left(y+2\right)
The initial inequality changes the direction when multiplied by y+2 for y+2<0.
7y+4<-\frac{4}{3}y-\frac{8}{3}
Multiply out the right hand side.
7y+\frac{4}{3}y<-4-\frac{8}{3}
Move the terms containing y to the left hand side and all other terms to the right hand side.
\frac{25}{3}y<-\frac{20}{3}
Combine like terms.
y<-\frac{4}{5}
Divide both sides by \frac{25}{3}. Since \frac{25}{3} is positive, the inequality direction remains the same.
y<-2
Consider condition y<-2 specified above.
y\in \left(-\infty,-2\right)\cup \left(-\frac{4}{5},\infty\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}