Evaluate
\frac{7}{3yx^{21}}
Expand
\frac{7}{3yx^{21}}
Share
Copied to clipboard
\left(\frac{7x^{-3}y^{2}}{3x^{2}y}\right)^{5}\times \left(\frac{9x^{-3}}{49x^{-5}y^{3}}\right)^{2}
To multiply powers of the same base, add their exponents. Add 1 and -4 to get -3.
\left(\frac{7x^{-3}y}{3x^{2}}\right)^{5}\times \left(\frac{9x^{-3}}{49x^{-5}y^{3}}\right)^{2}
Cancel out y in both numerator and denominator.
\left(\frac{7y}{3x^{5}}\right)^{5}\times \left(\frac{9x^{-3}}{49x^{-5}y^{3}}\right)^{2}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(7y\right)^{5}}{\left(3x^{5}\right)^{5}}\times \left(\frac{9x^{-3}}{49x^{-5}y^{3}}\right)^{2}
To raise \frac{7y}{3x^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(7y\right)^{5}}{\left(3x^{5}\right)^{5}}\times \left(\frac{9x^{2}}{49y^{3}}\right)^{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(7y\right)^{5}}{\left(3x^{5}\right)^{5}}\times \frac{\left(9x^{2}\right)^{2}}{\left(49y^{3}\right)^{2}}
To raise \frac{9x^{2}}{49y^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(7y\right)^{5}\times \left(9x^{2}\right)^{2}}{\left(3x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
Multiply \frac{\left(7y\right)^{5}}{\left(3x^{5}\right)^{5}} times \frac{\left(9x^{2}\right)^{2}}{\left(49y^{3}\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{7^{5}y^{5}\times \left(9x^{2}\right)^{2}}{\left(3x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
Expand \left(7y\right)^{5}.
\frac{16807y^{5}\times \left(9x^{2}\right)^{2}}{\left(3x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
Calculate 7 to the power of 5 and get 16807.
\frac{16807y^{5}\times 9^{2}\left(x^{2}\right)^{2}}{\left(3x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
Expand \left(9x^{2}\right)^{2}.
\frac{16807y^{5}\times 9^{2}x^{4}}{\left(3x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{16807y^{5}\times 81x^{4}}{\left(3x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
Calculate 9 to the power of 2 and get 81.
\frac{1361367y^{5}x^{4}}{\left(3x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
Multiply 16807 and 81 to get 1361367.
\frac{1361367y^{5}x^{4}}{3^{5}\left(x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
Expand \left(3x^{5}\right)^{5}.
\frac{1361367y^{5}x^{4}}{3^{5}x^{25}\times \left(49y^{3}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 5 and 5 to get 25.
\frac{1361367y^{5}x^{4}}{243x^{25}\times \left(49y^{3}\right)^{2}}
Calculate 3 to the power of 5 and get 243.
\frac{1361367y^{5}x^{4}}{243x^{25}\times 49^{2}\left(y^{3}\right)^{2}}
Expand \left(49y^{3}\right)^{2}.
\frac{1361367y^{5}x^{4}}{243x^{25}\times 49^{2}y^{6}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{1361367y^{5}x^{4}}{243x^{25}\times 2401y^{6}}
Calculate 49 to the power of 2 and get 2401.
\frac{1361367y^{5}x^{4}}{583443x^{25}y^{6}}
Multiply 243 and 2401 to get 583443.
\frac{7}{3yx^{21}}
Cancel out 194481x^{4}y^{5} in both numerator and denominator.
\left(\frac{7x^{-3}y^{2}}{3x^{2}y}\right)^{5}\times \left(\frac{9x^{-3}}{49x^{-5}y^{3}}\right)^{2}
To multiply powers of the same base, add their exponents. Add 1 and -4 to get -3.
\left(\frac{7x^{-3}y}{3x^{2}}\right)^{5}\times \left(\frac{9x^{-3}}{49x^{-5}y^{3}}\right)^{2}
Cancel out y in both numerator and denominator.
\left(\frac{7y}{3x^{5}}\right)^{5}\times \left(\frac{9x^{-3}}{49x^{-5}y^{3}}\right)^{2}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(7y\right)^{5}}{\left(3x^{5}\right)^{5}}\times \left(\frac{9x^{-3}}{49x^{-5}y^{3}}\right)^{2}
To raise \frac{7y}{3x^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(7y\right)^{5}}{\left(3x^{5}\right)^{5}}\times \left(\frac{9x^{2}}{49y^{3}}\right)^{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(7y\right)^{5}}{\left(3x^{5}\right)^{5}}\times \frac{\left(9x^{2}\right)^{2}}{\left(49y^{3}\right)^{2}}
To raise \frac{9x^{2}}{49y^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(7y\right)^{5}\times \left(9x^{2}\right)^{2}}{\left(3x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
Multiply \frac{\left(7y\right)^{5}}{\left(3x^{5}\right)^{5}} times \frac{\left(9x^{2}\right)^{2}}{\left(49y^{3}\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{7^{5}y^{5}\times \left(9x^{2}\right)^{2}}{\left(3x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
Expand \left(7y\right)^{5}.
\frac{16807y^{5}\times \left(9x^{2}\right)^{2}}{\left(3x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
Calculate 7 to the power of 5 and get 16807.
\frac{16807y^{5}\times 9^{2}\left(x^{2}\right)^{2}}{\left(3x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
Expand \left(9x^{2}\right)^{2}.
\frac{16807y^{5}\times 9^{2}x^{4}}{\left(3x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{16807y^{5}\times 81x^{4}}{\left(3x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
Calculate 9 to the power of 2 and get 81.
\frac{1361367y^{5}x^{4}}{\left(3x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
Multiply 16807 and 81 to get 1361367.
\frac{1361367y^{5}x^{4}}{3^{5}\left(x^{5}\right)^{5}\times \left(49y^{3}\right)^{2}}
Expand \left(3x^{5}\right)^{5}.
\frac{1361367y^{5}x^{4}}{3^{5}x^{25}\times \left(49y^{3}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 5 and 5 to get 25.
\frac{1361367y^{5}x^{4}}{243x^{25}\times \left(49y^{3}\right)^{2}}
Calculate 3 to the power of 5 and get 243.
\frac{1361367y^{5}x^{4}}{243x^{25}\times 49^{2}\left(y^{3}\right)^{2}}
Expand \left(49y^{3}\right)^{2}.
\frac{1361367y^{5}x^{4}}{243x^{25}\times 49^{2}y^{6}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{1361367y^{5}x^{4}}{243x^{25}\times 2401y^{6}}
Calculate 49 to the power of 2 and get 2401.
\frac{1361367y^{5}x^{4}}{583443x^{25}y^{6}}
Multiply 243 and 2401 to get 583443.
\frac{7}{3yx^{21}}
Cancel out 194481x^{4}y^{5} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}