Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\left(-\frac{1}{y}x+1\right)\times \frac{1}{x}}{\left(-y^{-2}x^{2}+1\right)x^{-2}}
Factor the expressions that are not already factored.
\frac{7\left(-\frac{1}{y}x+1\right)x^{1}}{-y^{-2}x^{2}+1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-7\times \frac{1}{y}x^{2}+7x}{1-\left(\frac{1}{y}x\right)^{2}}
Expand the expression.
\frac{\frac{-7}{y}x^{2}+7x}{1-\left(\frac{1}{y}x\right)^{2}}
Express -7\times \frac{1}{y} as a single fraction.
\frac{\frac{-7x^{2}}{y}+7x}{1-\left(\frac{1}{y}x\right)^{2}}
Express \frac{-7}{y}x^{2} as a single fraction.
\frac{\frac{-7x^{2}}{y}+\frac{7xy}{y}}{1-\left(\frac{1}{y}x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7x times \frac{y}{y}.
\frac{\frac{-7x^{2}+7xy}{y}}{1-\left(\frac{1}{y}x\right)^{2}}
Since \frac{-7x^{2}}{y} and \frac{7xy}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{-7x^{2}+7xy}{y}}{1-\left(\frac{x}{y}\right)^{2}}
Express \frac{1}{y}x as a single fraction.
\frac{\frac{-7x^{2}+7xy}{y}}{1-\frac{x^{2}}{y^{2}}}
To raise \frac{x}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{-7x^{2}+7xy}{y}}{\frac{y^{2}}{y^{2}}-\frac{x^{2}}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y^{2}}{y^{2}}.
\frac{\frac{-7x^{2}+7xy}{y}}{\frac{y^{2}-x^{2}}{y^{2}}}
Since \frac{y^{2}}{y^{2}} and \frac{x^{2}}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-7x^{2}+7xy\right)y^{2}}{y\left(y^{2}-x^{2}\right)}
Divide \frac{-7x^{2}+7xy}{y} by \frac{y^{2}-x^{2}}{y^{2}} by multiplying \frac{-7x^{2}+7xy}{y} by the reciprocal of \frac{y^{2}-x^{2}}{y^{2}}.
\frac{y\left(-7x^{2}+7xy\right)}{-x^{2}+y^{2}}
Cancel out y in both numerator and denominator.
\frac{7xy\left(-x+y\right)}{\left(x+y\right)\left(-x+y\right)}
Factor the expressions that are not already factored.
\frac{7xy}{x+y}
Cancel out -x+y in both numerator and denominator.
\frac{7\left(-\frac{1}{y}x+1\right)\times \frac{1}{x}}{\left(-y^{-2}x^{2}+1\right)x^{-2}}
Factor the expressions that are not already factored.
\frac{7\left(-\frac{1}{y}x+1\right)x^{1}}{-y^{-2}x^{2}+1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-7\times \frac{1}{y}x^{2}+7x}{1-\left(\frac{1}{y}x\right)^{2}}
Expand the expression.
\frac{\frac{-7}{y}x^{2}+7x}{1-\left(\frac{1}{y}x\right)^{2}}
Express -7\times \frac{1}{y} as a single fraction.
\frac{\frac{-7x^{2}}{y}+7x}{1-\left(\frac{1}{y}x\right)^{2}}
Express \frac{-7}{y}x^{2} as a single fraction.
\frac{\frac{-7x^{2}}{y}+\frac{7xy}{y}}{1-\left(\frac{1}{y}x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7x times \frac{y}{y}.
\frac{\frac{-7x^{2}+7xy}{y}}{1-\left(\frac{1}{y}x\right)^{2}}
Since \frac{-7x^{2}}{y} and \frac{7xy}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{-7x^{2}+7xy}{y}}{1-\left(\frac{x}{y}\right)^{2}}
Express \frac{1}{y}x as a single fraction.
\frac{\frac{-7x^{2}+7xy}{y}}{1-\frac{x^{2}}{y^{2}}}
To raise \frac{x}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{-7x^{2}+7xy}{y}}{\frac{y^{2}}{y^{2}}-\frac{x^{2}}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y^{2}}{y^{2}}.
\frac{\frac{-7x^{2}+7xy}{y}}{\frac{y^{2}-x^{2}}{y^{2}}}
Since \frac{y^{2}}{y^{2}} and \frac{x^{2}}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-7x^{2}+7xy\right)y^{2}}{y\left(y^{2}-x^{2}\right)}
Divide \frac{-7x^{2}+7xy}{y} by \frac{y^{2}-x^{2}}{y^{2}} by multiplying \frac{-7x^{2}+7xy}{y} by the reciprocal of \frac{y^{2}-x^{2}}{y^{2}}.
\frac{y\left(-7x^{2}+7xy\right)}{-x^{2}+y^{2}}
Cancel out y in both numerator and denominator.
\frac{7xy\left(-x+y\right)}{\left(x+y\right)\left(-x+y\right)}
Factor the expressions that are not already factored.
\frac{7xy}{x+y}
Cancel out -x+y in both numerator and denominator.