Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(7x+9\right)-6\left(4x^{2}-9\right)=90
Multiply both sides of the equation by 30, the least common multiple of 6,5.
35x+45-6\left(4x^{2}-9\right)=90
Use the distributive property to multiply 5 by 7x+9.
35x+45-24x^{2}+54=90
Use the distributive property to multiply -6 by 4x^{2}-9.
35x+99-24x^{2}=90
Add 45 and 54 to get 99.
35x+99-24x^{2}-90=0
Subtract 90 from both sides.
35x+9-24x^{2}=0
Subtract 90 from 99 to get 9.
-24x^{2}+35x+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-35±\sqrt{35^{2}-4\left(-24\right)\times 9}}{2\left(-24\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -24 for a, 35 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-35±\sqrt{1225-4\left(-24\right)\times 9}}{2\left(-24\right)}
Square 35.
x=\frac{-35±\sqrt{1225+96\times 9}}{2\left(-24\right)}
Multiply -4 times -24.
x=\frac{-35±\sqrt{1225+864}}{2\left(-24\right)}
Multiply 96 times 9.
x=\frac{-35±\sqrt{2089}}{2\left(-24\right)}
Add 1225 to 864.
x=\frac{-35±\sqrt{2089}}{-48}
Multiply 2 times -24.
x=\frac{\sqrt{2089}-35}{-48}
Now solve the equation x=\frac{-35±\sqrt{2089}}{-48} when ± is plus. Add -35 to \sqrt{2089}.
x=\frac{35-\sqrt{2089}}{48}
Divide -35+\sqrt{2089} by -48.
x=\frac{-\sqrt{2089}-35}{-48}
Now solve the equation x=\frac{-35±\sqrt{2089}}{-48} when ± is minus. Subtract \sqrt{2089} from -35.
x=\frac{\sqrt{2089}+35}{48}
Divide -35-\sqrt{2089} by -48.
x=\frac{35-\sqrt{2089}}{48} x=\frac{\sqrt{2089}+35}{48}
The equation is now solved.
5\left(7x+9\right)-6\left(4x^{2}-9\right)=90
Multiply both sides of the equation by 30, the least common multiple of 6,5.
35x+45-6\left(4x^{2}-9\right)=90
Use the distributive property to multiply 5 by 7x+9.
35x+45-24x^{2}+54=90
Use the distributive property to multiply -6 by 4x^{2}-9.
35x+99-24x^{2}=90
Add 45 and 54 to get 99.
35x-24x^{2}=90-99
Subtract 99 from both sides.
35x-24x^{2}=-9
Subtract 99 from 90 to get -9.
-24x^{2}+35x=-9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-24x^{2}+35x}{-24}=-\frac{9}{-24}
Divide both sides by -24.
x^{2}+\frac{35}{-24}x=-\frac{9}{-24}
Dividing by -24 undoes the multiplication by -24.
x^{2}-\frac{35}{24}x=-\frac{9}{-24}
Divide 35 by -24.
x^{2}-\frac{35}{24}x=\frac{3}{8}
Reduce the fraction \frac{-9}{-24} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{35}{24}x+\left(-\frac{35}{48}\right)^{2}=\frac{3}{8}+\left(-\frac{35}{48}\right)^{2}
Divide -\frac{35}{24}, the coefficient of the x term, by 2 to get -\frac{35}{48}. Then add the square of -\frac{35}{48} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{35}{24}x+\frac{1225}{2304}=\frac{3}{8}+\frac{1225}{2304}
Square -\frac{35}{48} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{35}{24}x+\frac{1225}{2304}=\frac{2089}{2304}
Add \frac{3}{8} to \frac{1225}{2304} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{35}{48}\right)^{2}=\frac{2089}{2304}
Factor x^{2}-\frac{35}{24}x+\frac{1225}{2304}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{48}\right)^{2}}=\sqrt{\frac{2089}{2304}}
Take the square root of both sides of the equation.
x-\frac{35}{48}=\frac{\sqrt{2089}}{48} x-\frac{35}{48}=-\frac{\sqrt{2089}}{48}
Simplify.
x=\frac{\sqrt{2089}+35}{48} x=\frac{35-\sqrt{2089}}{48}
Add \frac{35}{48} to both sides of the equation.