Solve for x
x=2
Graph
Share
Copied to clipboard
\left(x-4\right)\left(7x+7\right)-\left(2+x\right)\left(3x+3\right)=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Variable x cannot be equal to any of the values -2,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+2\right), the least common multiple of x+2,4-x,x^{2}-2x-8.
7x^{2}-21x-28-\left(2+x\right)\left(3x+3\right)=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Use the distributive property to multiply x-4 by 7x+7 and combine like terms.
7x^{2}-21x-28+\left(-2-x\right)\left(3x+3\right)=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Use the distributive property to multiply -1 by 2+x.
7x^{2}-21x-28-9x-6-3x^{2}=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Use the distributive property to multiply -2-x by 3x+3 and combine like terms.
7x^{2}-30x-28-6-3x^{2}=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Combine -21x and -9x to get -30x.
7x^{2}-30x-34-3x^{2}=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Subtract 6 from -28 to get -34.
4x^{2}-30x-34=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Combine 7x^{2} and -3x^{2} to get 4x^{2}.
4x^{2}-30x-34=\left(x^{2}-2x-8\right)\times 2-\left(x^{2}+26x+6\right)
Use the distributive property to multiply x-4 by x+2 and combine like terms.
4x^{2}-30x-34=2x^{2}-4x-16-\left(x^{2}+26x+6\right)
Use the distributive property to multiply x^{2}-2x-8 by 2.
4x^{2}-30x-34=2x^{2}-4x-16-x^{2}-26x-6
To find the opposite of x^{2}+26x+6, find the opposite of each term.
4x^{2}-30x-34=x^{2}-4x-16-26x-6
Combine 2x^{2} and -x^{2} to get x^{2}.
4x^{2}-30x-34=x^{2}-30x-16-6
Combine -4x and -26x to get -30x.
4x^{2}-30x-34=x^{2}-30x-22
Subtract 6 from -16 to get -22.
4x^{2}-30x-34-x^{2}=-30x-22
Subtract x^{2} from both sides.
3x^{2}-30x-34=-30x-22
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-30x-34+30x=-22
Add 30x to both sides.
3x^{2}-34=-22
Combine -30x and 30x to get 0.
3x^{2}-34+22=0
Add 22 to both sides.
3x^{2}-12=0
Add -34 and 22 to get -12.
x^{2}-4=0
Divide both sides by 3.
\left(x-2\right)\left(x+2\right)=0
Consider x^{2}-4. Rewrite x^{2}-4 as x^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
To find equation solutions, solve x-2=0 and x+2=0.
x=2
Variable x cannot be equal to -2.
\left(x-4\right)\left(7x+7\right)-\left(2+x\right)\left(3x+3\right)=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Variable x cannot be equal to any of the values -2,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+2\right), the least common multiple of x+2,4-x,x^{2}-2x-8.
7x^{2}-21x-28-\left(2+x\right)\left(3x+3\right)=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Use the distributive property to multiply x-4 by 7x+7 and combine like terms.
7x^{2}-21x-28+\left(-2-x\right)\left(3x+3\right)=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Use the distributive property to multiply -1 by 2+x.
7x^{2}-21x-28-9x-6-3x^{2}=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Use the distributive property to multiply -2-x by 3x+3 and combine like terms.
7x^{2}-30x-28-6-3x^{2}=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Combine -21x and -9x to get -30x.
7x^{2}-30x-34-3x^{2}=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Subtract 6 from -28 to get -34.
4x^{2}-30x-34=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Combine 7x^{2} and -3x^{2} to get 4x^{2}.
4x^{2}-30x-34=\left(x^{2}-2x-8\right)\times 2-\left(x^{2}+26x+6\right)
Use the distributive property to multiply x-4 by x+2 and combine like terms.
4x^{2}-30x-34=2x^{2}-4x-16-\left(x^{2}+26x+6\right)
Use the distributive property to multiply x^{2}-2x-8 by 2.
4x^{2}-30x-34=2x^{2}-4x-16-x^{2}-26x-6
To find the opposite of x^{2}+26x+6, find the opposite of each term.
4x^{2}-30x-34=x^{2}-4x-16-26x-6
Combine 2x^{2} and -x^{2} to get x^{2}.
4x^{2}-30x-34=x^{2}-30x-16-6
Combine -4x and -26x to get -30x.
4x^{2}-30x-34=x^{2}-30x-22
Subtract 6 from -16 to get -22.
4x^{2}-30x-34-x^{2}=-30x-22
Subtract x^{2} from both sides.
3x^{2}-30x-34=-30x-22
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-30x-34+30x=-22
Add 30x to both sides.
3x^{2}-34=-22
Combine -30x and 30x to get 0.
3x^{2}=-22+34
Add 34 to both sides.
3x^{2}=12
Add -22 and 34 to get 12.
x^{2}=\frac{12}{3}
Divide both sides by 3.
x^{2}=4
Divide 12 by 3 to get 4.
x=2 x=-2
Take the square root of both sides of the equation.
x=2
Variable x cannot be equal to -2.
\left(x-4\right)\left(7x+7\right)-\left(2+x\right)\left(3x+3\right)=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Variable x cannot be equal to any of the values -2,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+2\right), the least common multiple of x+2,4-x,x^{2}-2x-8.
7x^{2}-21x-28-\left(2+x\right)\left(3x+3\right)=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Use the distributive property to multiply x-4 by 7x+7 and combine like terms.
7x^{2}-21x-28+\left(-2-x\right)\left(3x+3\right)=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Use the distributive property to multiply -1 by 2+x.
7x^{2}-21x-28-9x-6-3x^{2}=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Use the distributive property to multiply -2-x by 3x+3 and combine like terms.
7x^{2}-30x-28-6-3x^{2}=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Combine -21x and -9x to get -30x.
7x^{2}-30x-34-3x^{2}=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Subtract 6 from -28 to get -34.
4x^{2}-30x-34=\left(x-4\right)\left(x+2\right)\times 2-\left(x^{2}+26x+6\right)
Combine 7x^{2} and -3x^{2} to get 4x^{2}.
4x^{2}-30x-34=\left(x^{2}-2x-8\right)\times 2-\left(x^{2}+26x+6\right)
Use the distributive property to multiply x-4 by x+2 and combine like terms.
4x^{2}-30x-34=2x^{2}-4x-16-\left(x^{2}+26x+6\right)
Use the distributive property to multiply x^{2}-2x-8 by 2.
4x^{2}-30x-34=2x^{2}-4x-16-x^{2}-26x-6
To find the opposite of x^{2}+26x+6, find the opposite of each term.
4x^{2}-30x-34=x^{2}-4x-16-26x-6
Combine 2x^{2} and -x^{2} to get x^{2}.
4x^{2}-30x-34=x^{2}-30x-16-6
Combine -4x and -26x to get -30x.
4x^{2}-30x-34=x^{2}-30x-22
Subtract 6 from -16 to get -22.
4x^{2}-30x-34-x^{2}=-30x-22
Subtract x^{2} from both sides.
3x^{2}-30x-34=-30x-22
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-30x-34+30x=-22
Add 30x to both sides.
3x^{2}-34=-22
Combine -30x and 30x to get 0.
3x^{2}-34+22=0
Add 22 to both sides.
3x^{2}-12=0
Add -34 and 22 to get -12.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-12\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-12\right)}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\left(-12\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{144}}{2\times 3}
Multiply -12 times -12.
x=\frac{0±12}{2\times 3}
Take the square root of 144.
x=\frac{0±12}{6}
Multiply 2 times 3.
x=2
Now solve the equation x=\frac{0±12}{6} when ± is plus. Divide 12 by 6.
x=-2
Now solve the equation x=\frac{0±12}{6} when ± is minus. Divide -12 by 6.
x=2 x=-2
The equation is now solved.
x=2
Variable x cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}