Solve for x
x=-\frac{y+3}{7-5y}
y\neq \frac{7}{5}
Solve for y
y=-\frac{7x+3}{1-5x}
x\neq \frac{1}{5}
Graph
Share
Copied to clipboard
7x+3=y\left(5x-1\right)
Variable x cannot be equal to \frac{1}{5} since division by zero is not defined. Multiply both sides of the equation by 5x-1.
7x+3=5yx-y
Use the distributive property to multiply y by 5x-1.
7x+3-5yx=-y
Subtract 5yx from both sides.
7x-5yx=-y-3
Subtract 3 from both sides.
\left(7-5y\right)x=-y-3
Combine all terms containing x.
\frac{\left(7-5y\right)x}{7-5y}=\frac{-y-3}{7-5y}
Divide both sides by -5y+7.
x=\frac{-y-3}{7-5y}
Dividing by -5y+7 undoes the multiplication by -5y+7.
x=-\frac{y+3}{7-5y}
Divide -y-3 by -5y+7.
x=-\frac{y+3}{7-5y}\text{, }x\neq \frac{1}{5}
Variable x cannot be equal to \frac{1}{5}.
7x+3=y\left(5x-1\right)
Multiply both sides of the equation by 5x-1.
7x+3=5yx-y
Use the distributive property to multiply y by 5x-1.
5yx-y=7x+3
Swap sides so that all variable terms are on the left hand side.
\left(5x-1\right)y=7x+3
Combine all terms containing y.
\frac{\left(5x-1\right)y}{5x-1}=\frac{7x+3}{5x-1}
Divide both sides by 5x-1.
y=\frac{7x+3}{5x-1}
Dividing by 5x-1 undoes the multiplication by 5x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}