Solve for x
x = -\frac{17}{11} = -1\frac{6}{11} \approx -1.545454545
Graph
Share
Copied to clipboard
6\left(7x+11\right)-4\left(13x-5\right)=60-3\left(7x-3\right)
Multiply both sides of the equation by 12, the least common multiple of 2,3,4.
42x+66-4\left(13x-5\right)=60-3\left(7x-3\right)
Use the distributive property to multiply 6 by 7x+11.
42x+66-52x+20=60-3\left(7x-3\right)
Use the distributive property to multiply -4 by 13x-5.
-10x+66+20=60-3\left(7x-3\right)
Combine 42x and -52x to get -10x.
-10x+86=60-3\left(7x-3\right)
Add 66 and 20 to get 86.
-10x+86=60-21x+9
Use the distributive property to multiply -3 by 7x-3.
-10x+86=69-21x
Add 60 and 9 to get 69.
-10x+86+21x=69
Add 21x to both sides.
11x+86=69
Combine -10x and 21x to get 11x.
11x=69-86
Subtract 86 from both sides.
11x=-17
Subtract 86 from 69 to get -17.
x=\frac{-17}{11}
Divide both sides by 11.
x=-\frac{17}{11}
Fraction \frac{-17}{11} can be rewritten as -\frac{17}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}