Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7r^{2}+51r-40\right)\left(7r+2\right)}{\left(42-r-72\right)\left(49r^{2}-21r-10\right)}
Divide \frac{7r^{2}+51r-40}{42-r-72} by \frac{49r^{2}-21r-10}{7r+2} by multiplying \frac{7r^{2}+51r-40}{42-r-72} by the reciprocal of \frac{49r^{2}-21r-10}{7r+2}.
\frac{\left(7r^{2}+51r-40\right)\left(7r+2\right)}{\left(-30-r\right)\left(49r^{2}-21r-10\right)}
Subtract 72 from 42 to get -30.
\frac{\left(7r-5\right)\left(r+8\right)\left(7r+2\right)}{\left(-r-30\right)\left(7r-5\right)\left(7r+2\right)}
Factor the expressions that are not already factored.
\frac{r+8}{-r-30}
Cancel out \left(7r-5\right)\left(7r+2\right) in both numerator and denominator.
\frac{\left(7r^{2}+51r-40\right)\left(7r+2\right)}{\left(42-r-72\right)\left(49r^{2}-21r-10\right)}
Divide \frac{7r^{2}+51r-40}{42-r-72} by \frac{49r^{2}-21r-10}{7r+2} by multiplying \frac{7r^{2}+51r-40}{42-r-72} by the reciprocal of \frac{49r^{2}-21r-10}{7r+2}.
\frac{\left(7r^{2}+51r-40\right)\left(7r+2\right)}{\left(-30-r\right)\left(49r^{2}-21r-10\right)}
Subtract 72 from 42 to get -30.
\frac{\left(7r-5\right)\left(r+8\right)\left(7r+2\right)}{\left(-r-30\right)\left(7r-5\right)\left(7r+2\right)}
Factor the expressions that are not already factored.
\frac{r+8}{-r-30}
Cancel out \left(7r-5\right)\left(7r+2\right) in both numerator and denominator.