Evaluate
-\frac{r+8}{r+30}
Expand
-\frac{r+8}{r+30}
Share
Copied to clipboard
\frac{\left(7r^{2}+51r-40\right)\left(7r+2\right)}{\left(42-r-72\right)\left(49r^{2}-21r-10\right)}
Divide \frac{7r^{2}+51r-40}{42-r-72} by \frac{49r^{2}-21r-10}{7r+2} by multiplying \frac{7r^{2}+51r-40}{42-r-72} by the reciprocal of \frac{49r^{2}-21r-10}{7r+2}.
\frac{\left(7r^{2}+51r-40\right)\left(7r+2\right)}{\left(-30-r\right)\left(49r^{2}-21r-10\right)}
Subtract 72 from 42 to get -30.
\frac{\left(7r-5\right)\left(r+8\right)\left(7r+2\right)}{\left(-r-30\right)\left(7r-5\right)\left(7r+2\right)}
Factor the expressions that are not already factored.
\frac{r+8}{-r-30}
Cancel out \left(7r-5\right)\left(7r+2\right) in both numerator and denominator.
\frac{\left(7r^{2}+51r-40\right)\left(7r+2\right)}{\left(42-r-72\right)\left(49r^{2}-21r-10\right)}
Divide \frac{7r^{2}+51r-40}{42-r-72} by \frac{49r^{2}-21r-10}{7r+2} by multiplying \frac{7r^{2}+51r-40}{42-r-72} by the reciprocal of \frac{49r^{2}-21r-10}{7r+2}.
\frac{\left(7r^{2}+51r-40\right)\left(7r+2\right)}{\left(-30-r\right)\left(49r^{2}-21r-10\right)}
Subtract 72 from 42 to get -30.
\frac{\left(7r-5\right)\left(r+8\right)\left(7r+2\right)}{\left(-r-30\right)\left(7r-5\right)\left(7r+2\right)}
Factor the expressions that are not already factored.
\frac{r+8}{-r-30}
Cancel out \left(7r-5\right)\left(7r+2\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}