Evaluate
\frac{d}{4}
Differentiate w.r.t. d
\frac{1}{4} = 0.25
Share
Copied to clipboard
\frac{4\times 7d}{36}-\frac{19d}{36}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 36 is 36. Multiply \frac{7d}{9} times \frac{4}{4}.
\frac{4\times 7d-19d}{36}
Since \frac{4\times 7d}{36} and \frac{19d}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{28d-19d}{36}
Do the multiplications in 4\times 7d-19d.
\frac{9d}{36}
Combine like terms in 28d-19d.
\frac{1}{4}d
Divide 9d by 36 to get \frac{1}{4}d.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{4\times 7d}{36}-\frac{19d}{36})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 36 is 36. Multiply \frac{7d}{9} times \frac{4}{4}.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{4\times 7d-19d}{36})
Since \frac{4\times 7d}{36} and \frac{19d}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{28d-19d}{36})
Do the multiplications in 4\times 7d-19d.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{9d}{36})
Combine like terms in 28d-19d.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{1}{4}d)
Divide 9d by 36 to get \frac{1}{4}d.
\frac{1}{4}d^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{1}{4}d^{0}
Subtract 1 from 1.
\frac{1}{4}\times 1
For any term t except 0, t^{0}=1.
\frac{1}{4}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}