Solve for y
y\leq -\frac{5}{3}
Graph
Share
Copied to clipboard
3\left(7-9y\right)+84\leq 2\left(6y-10\right)-114y
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
21-27y+84\leq 2\left(6y-10\right)-114y
Use the distributive property to multiply 3 by 7-9y.
105-27y\leq 2\left(6y-10\right)-114y
Add 21 and 84 to get 105.
105-27y\leq 12y-20-114y
Use the distributive property to multiply 2 by 6y-10.
105-27y\leq -102y-20
Combine 12y and -114y to get -102y.
105-27y+102y\leq -20
Add 102y to both sides.
105+75y\leq -20
Combine -27y and 102y to get 75y.
75y\leq -20-105
Subtract 105 from both sides.
75y\leq -125
Subtract 105 from -20 to get -125.
y\leq \frac{-125}{75}
Divide both sides by 75. Since 75 is positive, the inequality direction remains the same.
y\leq -\frac{5}{3}
Reduce the fraction \frac{-125}{75} to lowest terms by extracting and canceling out 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}