Solve for x
x = \frac{233}{183} = 1\frac{50}{183} \approx 1.273224044
Graph
Share
Copied to clipboard
45\left(7-9x\right)-40\times 3=72\left(2x-7\right)
Multiply both sides of the equation by 360, the least common multiple of 8,9,5.
315-405x-40\times 3=72\left(2x-7\right)
Use the distributive property to multiply 45 by 7-9x.
315-405x-120=72\left(2x-7\right)
Multiply -40 and 3 to get -120.
195-405x=72\left(2x-7\right)
Subtract 120 from 315 to get 195.
195-405x=144x-504
Use the distributive property to multiply 72 by 2x-7.
195-405x-144x=-504
Subtract 144x from both sides.
195-549x=-504
Combine -405x and -144x to get -549x.
-549x=-504-195
Subtract 195 from both sides.
-549x=-699
Subtract 195 from -504 to get -699.
x=\frac{-699}{-549}
Divide both sides by -549.
x=\frac{233}{183}
Reduce the fraction \frac{-699}{-549} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}