Evaluate
\frac{\sqrt{2}\left(7-8\sqrt{3}\right)}{x}
Differentiate w.r.t. x
-\frac{\sqrt{2}\left(7-8\sqrt{3}\right)}{x^{2}}
Graph
Share
Copied to clipboard
\frac{7-8\sqrt{3}}{x\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{7-8\sqrt{3}}{x\times \frac{\sqrt{2}}{2}}
The square of \sqrt{2} is 2.
\frac{7-8\sqrt{3}}{\frac{x\sqrt{2}}{2}}
Express x\times \frac{\sqrt{2}}{2} as a single fraction.
\frac{\left(7-8\sqrt{3}\right)\times 2}{x\sqrt{2}}
Divide 7-8\sqrt{3} by \frac{x\sqrt{2}}{2} by multiplying 7-8\sqrt{3} by the reciprocal of \frac{x\sqrt{2}}{2}.
\frac{2\left(-8\sqrt{3}+7\right)}{\sqrt{2}x}
Factor the expressions that are not already factored.
\frac{\sqrt{2}\left(-8\sqrt{3}+7\right)}{x}
Cancel out \sqrt{2} in both numerator and denominator.
\frac{-8\sqrt{2}\sqrt{3}+7\sqrt{2}}{x}
Expand the expression.
\frac{-8\sqrt{6}+7\sqrt{2}}{x}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}