Solve for x
x<-\frac{7}{2}
Graph
Share
Copied to clipboard
3\left(7-6x\right)+60x<2\left(20x+1\right)+12
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
21-18x+60x<2\left(20x+1\right)+12
Use the distributive property to multiply 3 by 7-6x.
21+42x<2\left(20x+1\right)+12
Combine -18x and 60x to get 42x.
21+42x<40x+2+12
Use the distributive property to multiply 2 by 20x+1.
21+42x<40x+14
Add 2 and 12 to get 14.
21+42x-40x<14
Subtract 40x from both sides.
21+2x<14
Combine 42x and -40x to get 2x.
2x<14-21
Subtract 21 from both sides.
2x<-7
Subtract 21 from 14 to get -7.
x<-\frac{7}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}