Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7-6i\right)\left(7-6i\right)}{\left(7+6i\right)\left(7-6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-6i.
\frac{\left(7-6i\right)\left(7-6i\right)}{7^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7-6i\right)\left(7-6i\right)}{85}
By definition, i^{2} is -1. Calculate the denominator.
\frac{7\times 7+7\times \left(-6i\right)-6i\times 7-6\left(-6\right)i^{2}}{85}
Multiply complex numbers 7-6i and 7-6i like you multiply binomials.
\frac{7\times 7+7\times \left(-6i\right)-6i\times 7-6\left(-6\right)\left(-1\right)}{85}
By definition, i^{2} is -1.
\frac{49-42i-42i-36}{85}
Do the multiplications in 7\times 7+7\times \left(-6i\right)-6i\times 7-6\left(-6\right)\left(-1\right).
\frac{49-36+\left(-42-42\right)i}{85}
Combine the real and imaginary parts in 49-42i-42i-36.
\frac{13-84i}{85}
Do the additions in 49-36+\left(-42-42\right)i.
\frac{13}{85}-\frac{84}{85}i
Divide 13-84i by 85 to get \frac{13}{85}-\frac{84}{85}i.
Re(\frac{\left(7-6i\right)\left(7-6i\right)}{\left(7+6i\right)\left(7-6i\right)})
Multiply both numerator and denominator of \frac{7-6i}{7+6i} by the complex conjugate of the denominator, 7-6i.
Re(\frac{\left(7-6i\right)\left(7-6i\right)}{7^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(7-6i\right)\left(7-6i\right)}{85})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{7\times 7+7\times \left(-6i\right)-6i\times 7-6\left(-6\right)i^{2}}{85})
Multiply complex numbers 7-6i and 7-6i like you multiply binomials.
Re(\frac{7\times 7+7\times \left(-6i\right)-6i\times 7-6\left(-6\right)\left(-1\right)}{85})
By definition, i^{2} is -1.
Re(\frac{49-42i-42i-36}{85})
Do the multiplications in 7\times 7+7\times \left(-6i\right)-6i\times 7-6\left(-6\right)\left(-1\right).
Re(\frac{49-36+\left(-42-42\right)i}{85})
Combine the real and imaginary parts in 49-42i-42i-36.
Re(\frac{13-84i}{85})
Do the additions in 49-36+\left(-42-42\right)i.
Re(\frac{13}{85}-\frac{84}{85}i)
Divide 13-84i by 85 to get \frac{13}{85}-\frac{84}{85}i.
\frac{13}{85}
The real part of \frac{13}{85}-\frac{84}{85}i is \frac{13}{85}.