Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{7-3}{3-\sqrt{2}}
Calculate the square root of 9 and get 3.
\frac{4}{3-\sqrt{2}}
Subtract 3 from 7 to get 4.
\frac{4\left(3+\sqrt{2}\right)}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}
Rationalize the denominator of \frac{4}{3-\sqrt{2}} by multiplying numerator and denominator by 3+\sqrt{2}.
\frac{4\left(3+\sqrt{2}\right)}{3^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(3+\sqrt{2}\right)}{9-2}
Square 3. Square \sqrt{2}.
\frac{4\left(3+\sqrt{2}\right)}{7}
Subtract 2 from 9 to get 7.
\frac{12+4\sqrt{2}}{7}
Use the distributive property to multiply 4 by 3+\sqrt{2}.