Solve for m
m=\frac{4p}{7}
p\neq 0
Solve for p
p=\frac{7m}{4}
m\neq 0
Share
Copied to clipboard
7\left(3m-p\right)=5p
Multiply both sides of the equation by p.
21m-7p=5p
Use the distributive property to multiply 7 by 3m-p.
21m=5p+7p
Add 7p to both sides.
21m=12p
Combine 5p and 7p to get 12p.
\frac{21m}{21}=\frac{12p}{21}
Divide both sides by 21.
m=\frac{12p}{21}
Dividing by 21 undoes the multiplication by 21.
m=\frac{4p}{7}
Divide 12p by 21.
7\left(3m-p\right)=5p
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by p.
21m-7p=5p
Use the distributive property to multiply 7 by 3m-p.
21m-7p-5p=0
Subtract 5p from both sides.
21m-12p=0
Combine -7p and -5p to get -12p.
-12p=-21m
Subtract 21m from both sides. Anything subtracted from zero gives its negation.
\frac{-12p}{-12}=-\frac{21m}{-12}
Divide both sides by -12.
p=-\frac{21m}{-12}
Dividing by -12 undoes the multiplication by -12.
p=\frac{7m}{4}
Divide -21m by -12.
p=\frac{7m}{4}\text{, }p\neq 0
Variable p cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}