Verify
true
Share
Copied to clipboard
\frac{-14}{-3-2}+\frac{3}{-3}+2>\frac{6}{3^{2}+2\times 3}
Multiply 7 and -2 to get -14.
\frac{-14}{-5}+\frac{3}{-3}+2>\frac{6}{3^{2}+2\times 3}
Subtract 2 from -3 to get -5.
\frac{14}{5}+\frac{3}{-3}+2>\frac{6}{3^{2}+2\times 3}
Fraction \frac{-14}{-5} can be simplified to \frac{14}{5} by removing the negative sign from both the numerator and the denominator.
\frac{14}{5}-1+2>\frac{6}{3^{2}+2\times 3}
Divide 3 by -3 to get -1.
\frac{14}{5}-\frac{5}{5}+2>\frac{6}{3^{2}+2\times 3}
Convert 1 to fraction \frac{5}{5}.
\frac{14-5}{5}+2>\frac{6}{3^{2}+2\times 3}
Since \frac{14}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{5}+2>\frac{6}{3^{2}+2\times 3}
Subtract 5 from 14 to get 9.
\frac{9}{5}+\frac{10}{5}>\frac{6}{3^{2}+2\times 3}
Convert 2 to fraction \frac{10}{5}.
\frac{9+10}{5}>\frac{6}{3^{2}+2\times 3}
Since \frac{9}{5} and \frac{10}{5} have the same denominator, add them by adding their numerators.
\frac{19}{5}>\frac{6}{3^{2}+2\times 3}
Add 9 and 10 to get 19.
\frac{19}{5}>\frac{6}{9+2\times 3}
Calculate 3 to the power of 2 and get 9.
\frac{19}{5}>\frac{6}{9+6}
Multiply 2 and 3 to get 6.
\frac{19}{5}>\frac{6}{15}
Add 9 and 6 to get 15.
\frac{19}{5}>\frac{2}{5}
Reduce the fraction \frac{6}{15} to lowest terms by extracting and canceling out 3.
\text{true}
Compare \frac{19}{5} and \frac{2}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}