Skip to main content
Verify
true
Tick mark Image

Similar Problems from Web Search

Share

\frac{-14}{-3-2}+\frac{3}{-3}+2>\frac{6}{3^{2}+2\times 3}
Multiply 7 and -2 to get -14.
\frac{-14}{-5}+\frac{3}{-3}+2>\frac{6}{3^{2}+2\times 3}
Subtract 2 from -3 to get -5.
\frac{14}{5}+\frac{3}{-3}+2>\frac{6}{3^{2}+2\times 3}
Fraction \frac{-14}{-5} can be simplified to \frac{14}{5} by removing the negative sign from both the numerator and the denominator.
\frac{14}{5}-1+2>\frac{6}{3^{2}+2\times 3}
Divide 3 by -3 to get -1.
\frac{14}{5}-\frac{5}{5}+2>\frac{6}{3^{2}+2\times 3}
Convert 1 to fraction \frac{5}{5}.
\frac{14-5}{5}+2>\frac{6}{3^{2}+2\times 3}
Since \frac{14}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{5}+2>\frac{6}{3^{2}+2\times 3}
Subtract 5 from 14 to get 9.
\frac{9}{5}+\frac{10}{5}>\frac{6}{3^{2}+2\times 3}
Convert 2 to fraction \frac{10}{5}.
\frac{9+10}{5}>\frac{6}{3^{2}+2\times 3}
Since \frac{9}{5} and \frac{10}{5} have the same denominator, add them by adding their numerators.
\frac{19}{5}>\frac{6}{3^{2}+2\times 3}
Add 9 and 10 to get 19.
\frac{19}{5}>\frac{6}{9+2\times 3}
Calculate 3 to the power of 2 and get 9.
\frac{19}{5}>\frac{6}{9+6}
Multiply 2 and 3 to get 6.
\frac{19}{5}>\frac{6}{15}
Add 9 and 6 to get 15.
\frac{19}{5}>\frac{2}{5}
Reduce the fraction \frac{6}{15} to lowest terms by extracting and canceling out 3.
\text{true}
Compare \frac{19}{5} and \frac{2}{5}.