Solve for y
y=\frac{5}{9}\approx 0.555555556
Graph
Share
Copied to clipboard
7-\left(y-2\right)\times 4=\left(y+2\right)\times 5
Variable y cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(y-2\right)\left(y+2\right), the least common multiple of y^{2}-4,y+2,y-2.
7-\left(4y-8\right)=\left(y+2\right)\times 5
Use the distributive property to multiply y-2 by 4.
7-4y+8=\left(y+2\right)\times 5
To find the opposite of 4y-8, find the opposite of each term.
15-4y=\left(y+2\right)\times 5
Add 7 and 8 to get 15.
15-4y=5y+10
Use the distributive property to multiply y+2 by 5.
15-4y-5y=10
Subtract 5y from both sides.
15-9y=10
Combine -4y and -5y to get -9y.
-9y=10-15
Subtract 15 from both sides.
-9y=-5
Subtract 15 from 10 to get -5.
y=\frac{-5}{-9}
Divide both sides by -9.
y=\frac{5}{9}
Fraction \frac{-5}{-9} can be simplified to \frac{5}{9} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}