Solve for b
b = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Share
Copied to clipboard
5\times 7=\left(b+5\right)\times 10
Variable b cannot be equal to -5 since division by zero is not defined. Multiply both sides of the equation by 5\left(b+5\right), the least common multiple of b+5,5.
35=\left(b+5\right)\times 10
Multiply 5 and 7 to get 35.
35=10b+50
Use the distributive property to multiply b+5 by 10.
10b+50=35
Swap sides so that all variable terms are on the left hand side.
10b=35-50
Subtract 50 from both sides.
10b=-15
Subtract 50 from 35 to get -15.
b=\frac{-15}{10}
Divide both sides by 10.
b=-\frac{3}{2}
Reduce the fraction \frac{-15}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}