Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{7}{\left(a+5\right)^{2}}+\frac{8}{\left(a-5\right)\left(a+5\right)}
Factor a^{2}+10a+25. Factor a^{2}-25.
\frac{7\left(a-5\right)}{\left(a-5\right)\left(a+5\right)^{2}}+\frac{8\left(a+5\right)}{\left(a-5\right)\left(a+5\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+5\right)^{2} and \left(a-5\right)\left(a+5\right) is \left(a-5\right)\left(a+5\right)^{2}. Multiply \frac{7}{\left(a+5\right)^{2}} times \frac{a-5}{a-5}. Multiply \frac{8}{\left(a-5\right)\left(a+5\right)} times \frac{a+5}{a+5}.
\frac{7\left(a-5\right)+8\left(a+5\right)}{\left(a-5\right)\left(a+5\right)^{2}}
Since \frac{7\left(a-5\right)}{\left(a-5\right)\left(a+5\right)^{2}} and \frac{8\left(a+5\right)}{\left(a-5\right)\left(a+5\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{7a-35+8a+40}{\left(a-5\right)\left(a+5\right)^{2}}
Do the multiplications in 7\left(a-5\right)+8\left(a+5\right).
\frac{15a+5}{\left(a-5\right)\left(a+5\right)^{2}}
Combine like terms in 7a-35+8a+40.
\frac{15a+5}{a^{3}+5a^{2}-25a-125}
Expand \left(a-5\right)\left(a+5\right)^{2}.