Evaluate
\frac{5\left(3a+1\right)}{\left(a-5\right)\left(a+5\right)^{2}}
Differentiate w.r.t. a
\frac{10\left(-3a^{2}+6a-35\right)}{\left(a-5\right)^{2}\left(a+5\right)^{3}}
Share
Copied to clipboard
\frac{7}{\left(a+5\right)^{2}}+\frac{8}{\left(a-5\right)\left(a+5\right)}
Factor a^{2}+10a+25. Factor a^{2}-25.
\frac{7\left(a-5\right)}{\left(a-5\right)\left(a+5\right)^{2}}+\frac{8\left(a+5\right)}{\left(a-5\right)\left(a+5\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+5\right)^{2} and \left(a-5\right)\left(a+5\right) is \left(a-5\right)\left(a+5\right)^{2}. Multiply \frac{7}{\left(a+5\right)^{2}} times \frac{a-5}{a-5}. Multiply \frac{8}{\left(a-5\right)\left(a+5\right)} times \frac{a+5}{a+5}.
\frac{7\left(a-5\right)+8\left(a+5\right)}{\left(a-5\right)\left(a+5\right)^{2}}
Since \frac{7\left(a-5\right)}{\left(a-5\right)\left(a+5\right)^{2}} and \frac{8\left(a+5\right)}{\left(a-5\right)\left(a+5\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{7a-35+8a+40}{\left(a-5\right)\left(a+5\right)^{2}}
Do the multiplications in 7\left(a-5\right)+8\left(a+5\right).
\frac{15a+5}{\left(a-5\right)\left(a+5\right)^{2}}
Combine like terms in 7a-35+8a+40.
\frac{15a+5}{a^{3}+5a^{2}-25a-125}
Expand \left(a-5\right)\left(a+5\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}