Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{7}{9}-\frac{3}{4}\times \frac{10}{9}+\frac{5}{9}
Divide \frac{3}{4} by \frac{9}{10} by multiplying \frac{3}{4} by the reciprocal of \frac{9}{10}.
\frac{7}{9}-\frac{3\times 10}{4\times 9}+\frac{5}{9}
Multiply \frac{3}{4} times \frac{10}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{9}-\frac{30}{36}+\frac{5}{9}
Do the multiplications in the fraction \frac{3\times 10}{4\times 9}.
\frac{7}{9}-\frac{5}{6}+\frac{5}{9}
Reduce the fraction \frac{30}{36} to lowest terms by extracting and canceling out 6.
\frac{14}{18}-\frac{15}{18}+\frac{5}{9}
Least common multiple of 9 and 6 is 18. Convert \frac{7}{9} and \frac{5}{6} to fractions with denominator 18.
\frac{14-15}{18}+\frac{5}{9}
Since \frac{14}{18} and \frac{15}{18} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{18}+\frac{5}{9}
Subtract 15 from 14 to get -1.
-\frac{1}{18}+\frac{10}{18}
Least common multiple of 18 and 9 is 18. Convert -\frac{1}{18} and \frac{5}{9} to fractions with denominator 18.
\frac{-1+10}{18}
Since -\frac{1}{18} and \frac{10}{18} have the same denominator, add them by adding their numerators.
\frac{9}{18}
Add -1 and 10 to get 9.
\frac{1}{2}
Reduce the fraction \frac{9}{18} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}