Evaluate
\frac{49}{45}\approx 1.088888889
Factor
\frac{7 ^ {2}}{3 ^ {2} \cdot 5} = 1\frac{4}{45} = 1.0888888888888888
Share
Copied to clipboard
\frac{7\times 3}{9\times 5}+\frac{7}{9}\times \frac{4}{5}
Multiply \frac{7}{9} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{21}{45}+\frac{7}{9}\times \frac{4}{5}
Do the multiplications in the fraction \frac{7\times 3}{9\times 5}.
\frac{7}{15}+\frac{7}{9}\times \frac{4}{5}
Reduce the fraction \frac{21}{45} to lowest terms by extracting and canceling out 3.
\frac{7}{15}+\frac{7\times 4}{9\times 5}
Multiply \frac{7}{9} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{15}+\frac{28}{45}
Do the multiplications in the fraction \frac{7\times 4}{9\times 5}.
\frac{21}{45}+\frac{28}{45}
Least common multiple of 15 and 45 is 45. Convert \frac{7}{15} and \frac{28}{45} to fractions with denominator 45.
\frac{21+28}{45}
Since \frac{21}{45} and \frac{28}{45} have the same denominator, add them by adding their numerators.
\frac{49}{45}
Add 21 and 28 to get 49.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}