Solve for a
a=\frac{20y}{9}
y\neq 0
Solve for y
y=\frac{9a}{20}
a\neq 0
Graph
Share
Copied to clipboard
9y\times \frac{7}{9}+9a=27y
Multiply both sides of the equation by 9y, the least common multiple of 9,y.
7y+9a=27y
Multiply 9 and \frac{7}{9} to get 7.
9a=27y-7y
Subtract 7y from both sides.
9a=20y
Combine 27y and -7y to get 20y.
\frac{9a}{9}=\frac{20y}{9}
Divide both sides by 9.
a=\frac{20y}{9}
Dividing by 9 undoes the multiplication by 9.
9y\times \frac{7}{9}+9a=27y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9y, the least common multiple of 9,y.
7y+9a=27y
Multiply 9 and \frac{7}{9} to get 7.
7y+9a-27y=0
Subtract 27y from both sides.
-20y+9a=0
Combine 7y and -27y to get -20y.
-20y=-9a
Subtract 9a from both sides. Anything subtracted from zero gives its negation.
\frac{-20y}{-20}=-\frac{9a}{-20}
Divide both sides by -20.
y=-\frac{9a}{-20}
Dividing by -20 undoes the multiplication by -20.
y=\frac{9a}{20}
Divide -9a by -20.
y=\frac{9a}{20}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}